Math, asked by WICKED69, 6 months ago

If both radius and height of a right circular cone are doubled then ratio of its original CSA(curved surface area) to new CSA is what?

PLEASE GIVE FULL SOLUTIONS WITH ALL FORMULAS AND REASONS

Answers

Answered by Cosmique
42

Answer:

  • Required Ratio is 1 : 8

Explanation:

Let,

Initial radius of cone be r

Initial height of cone be h

then,

Initial CSA of cone would be

Initial CSA of cone = 1/3 π r² h  ____eqn(1)

Now,

When radius and height are doubled then,

New radius of cone = 2 r

New height of cone = 2 h

then,

New CSA of cone would be,

→ New CSA of cone = 1/3 π (2r)² (2h)

→ New CSA of cone = 1/3 π × 4r² × 2 h

New CSA of cone = 8/3 π r² h   ____eqn(2)

Now,

Ratio of original CSA and new CSA would be

→ initial CSA / new CSA = ( 1/3 π r² h ) / ( 8/3 π r² h )

Initial CSA / new CSA = 1 / 8

Therefore,

  • Ratio of its original CSA to new CSA is 1 : 8.
Answered by ZAYNN
72

Answer:

Let the Original Radius of cone be r

Let the Original Height of cone be h

A.T.Q.

New Radius of cone be 2r (i.e. Doubled)

New Height of cone be 2h (i.e. Doubled)

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf Original\:CSA_{cone}:New\:CSA_{cone}\\\\\\:\implies\sf  \dfrac{1}{3}\pi r^{2}h : \dfrac{1}{3}\pi (2r)^{2}(2h)\\\\{\scriptsize\qquad\bf{\dag}\:\:\frak{Canceling \:\: \bigg(\frac{1}{3}\pi \bigg) \:\:from \:\:both \:\:sides}}\\\\:\implies\sf r^{2}h : (2r)^{2}(2h)\\\\\\:\implies\sf r^{2}h :4r^{2} \times 2h\\\\\\:\implies\sf r^{2}h : 8r^{2}h\\\\{\scriptsize\qquad\bf{\dag}\:\:\frak{Canceling \:\:(r^{2}h)\:\:from \:\:both \:\:sides}}\\\\:\implies\underline{\boxed{\sf 1:8}}

\therefore\:\underline{\textsf{Hence, required ratio of CSA is \textbf{1:8}}}.

\rule{180}{1.5}

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:CSA = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA\\{\quad\:\:\:\qquad=\pi r^2+\pi rl}\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\end{minipage}}

Similar questions