Math, asked by GurmanSingh0179, 1 month ago

If both roots of the equation 4x² - 12ax + (9a² - 4a + 8) = 0 exceed 3, then the set of exhaustive values of a is​

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \sf{4 {x}^{2} - 12ax +  \left( 9 {a}^{2} - 4a + 8 \right) = 0 }

Let its roots be \alpha and \beta

 \tt{ \dagger  \: \: Sum \:  \: of \:  \: roots \: , \:  \:  \alpha +  \beta =  -  \dfrac{ - 12a}{4}  = 3a}

 \tt{ \dagger  \: \: Product \:  \: of \:  \: roots \: , \:  \:  \alpha \beta =   \dfrac{ 9 {a}^{2}  - 4a + 8}{4}  }

Now,

 | \alpha -  \beta|  =  \sqrt{( \alpha +  \beta)^{2} - 4 \alpha \beta }

 \implies | \alpha -  \beta|  =  \sqrt{( 3a)^{2} - ( 9 {a}^{2}  - 4a + 8)}  \\

 \implies | \alpha -  \beta|  =  \sqrt{9a^{2} -  9 {a}^{2}   +  4a  -  8}  \\

 \implies | \alpha -  \beta|  =  \sqrt{  4a  -  8}   \\

By the given condition,

 \implies | \alpha -  \beta|   < 3   \\

 \implies   \sqrt{  4a  -  8}  < 3  \\

 \implies    4a  -  8 <9 \\

 \implies    4a  <17 \\

 \implies    a  < \dfrac {17}{4} \\

Answered by thakrepayal25
2

We have,

$$4 x^{2}-12 a x+\left(9 a^{2}-4 a+8\right)=0$$

As here both roots of the equations is 0 and 3

So, let its roots be $\alpha$ and beta$

As we know that,

Sum of roots will be given by,

$\alpha+\beta=-\frac{-12 \mathrm{a}}{4}=3 \mathrm{a}$

We know that,

Product of the roots are given by

, $\alpha \beta=\frac{9 a^{2}-4 a+8}{4}$

Now applying the rule in the given question,

We will get like,

$$\begin{array}{l}|\alpha-\beta|=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta} \\\Longrightarrow|\alpha-\beta|=\sqrt{(3 a)^{2}-\left(9 a^{2}-4 a+8\right)} \\\Longrightarrow|\alpha-\beta|=\sqrt{9 a^{2}-9 a^{2}+4 a-8} \\\Longrightarrow|\alpha-\beta|=\sqrt{4 a-8}\end{array}$$

Now Applying the obtained expression in the given question,

Using the condition given in the question,

We will get that,

$$\begin{array}{l}\Longrightarrow|\alpha-\beta|<3 \\\Longrightarrow \sqrt{4 a-8}<3 \\\Longrightarrow 4 a-8<9 \\\Longrightarrow 4 a<17 \\\Longrightarrow a<\frac{17}{4}\end{array}$$

Hence, above will be required answer.

Similar questions