Math, asked by abhinavy408, 2 months ago

If both x + 1 and x - 1 and factors of ax3 + x2-2x + b, find the values of a and b​

Answers

Answered by MrMonarque
28

Refer The Attachment ⬆️

Value of a and b

  • 2 & -1

\bold{@MrMonarque}

Hope It Helps You ✌️

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:(x + 1) \: and \: (x - 1) \: are \: factors \: of \:  {ax}^{3} +  {x}^{2} - 2x + b

Let assume that

\rm :\longmapsto\:f(x) \:  =  \:  {ax}^{3} +  {x}^{2} - 2x + b

Now,

\rm :\longmapsto\:x + 1 \: is \: a \: factor \: of \: f(x)

We know,

Factor Theorem states that if x - a is a factor of polynomial f (x), then f(a) = 0.

So,

\rm :\longmapsto\:f( - 1) = 0

\rm :\longmapsto\: \:  {a( - 1)}^{3} +  {( - 1)}^{2} - 2( - 1) + b = 0

\rm :\longmapsto\: - a + 1 + 2 + b = 0

\rm :\longmapsto\: - a + 3 + b = 0

\bf\implies \:a = 3 + b -  -  -  - (1)

Now,

\rm :\longmapsto\:x  -  1 \: is \: a \: factor \: of \: f(x)

By factor theorem,

\rm :\longmapsto\:f(1) = 0

\rm :\longmapsto\: \:  {a(1)}^{3} +  {(1)}^{2} - 2(1) + b = 0

\rm :\longmapsto\:a + 1 - 2 + b = 0

\rm :\longmapsto\:a - 1 + b = 0

\rm :\longmapsto\:b + 3 - 1 + b = 0 \:  \:  \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\:2b + 2 = 0

\rm :\longmapsto\:2b= - 2

\bf :\longmapsto\:b \: = -  \: 1

On substituting b = - 1 in equation (1), we get

\rm :\longmapsto\:a = 3 - 1

\bf :\longmapsto\:a = 2

\begin{gathered}\begin{gathered}\bf\: \ :\longmapsto\:Hence-\begin{cases} &\bf{a \:  =  \: 2} \\ &\bf{b \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

Remainder Theorem :-

This theorem states that if a polynomial f(x) is divided by linear polynomial (x - a), then remainder is f(a).

Similar questions