If both (x+1) and (x-1) are factor of ax^3+x^2-2x+b,find a and b
Answers
Answered by
654
(x-1) and (x+1) are factors of the given polynomial.
x-1 = 0. ; x+1 = 0
x = 1. ; x = -1
Put x= -1,1 to find a and b
First,put x = 1
ax³+x²-2x+b = 0
a(1)³+(1)²-2(1)+b=0
a+1-2+b=0
a+b-1 = 0
a+b = 1 --------(1)
Put x = -1
a(-1)³+(-1)²-2(-1)+b = 0
a(-1)+1+2+b = 0
-a+b+3 = 0
-a+b = -3 -------(2)
(1)+(2)
a+b = 1
-a+b=-3
-----------
2b = -2
b = -2/2
b = -1
Put b= -1 in (1)
a+(-1) = 1
a-1 = 1
a=1+1
a=2
Therefore, a = 2 and b = -1
Hope it helps
★Snehitha2 (brainly benefactor)
x-1 = 0. ; x+1 = 0
x = 1. ; x = -1
Put x= -1,1 to find a and b
First,put x = 1
ax³+x²-2x+b = 0
a(1)³+(1)²-2(1)+b=0
a+1-2+b=0
a+b-1 = 0
a+b = 1 --------(1)
Put x = -1
a(-1)³+(-1)²-2(-1)+b = 0
a(-1)+1+2+b = 0
-a+b+3 = 0
-a+b = -3 -------(2)
(1)+(2)
a+b = 1
-a+b=-3
-----------
2b = -2
b = -2/2
b = -1
Put b= -1 in (1)
a+(-1) = 1
a-1 = 1
a=1+1
a=2
Therefore, a = 2 and b = -1
Hope it helps
★Snehitha2 (brainly benefactor)
Answered by
53
Answer :-
If (x-1) and (x-2) are doctors of p(x), than p=(-1) and (1).
Now,
Putting p(-1)=ax^3+x^2-2x+b
=a(-1)^3+(-1)^2-2(-1)+b=0
=-a+1+2+b=0
=-a+b=-3 ...(1)
Putting p(1)=ax^3+x^2-2x+b
=a(1)^3+(1)^2-2(1)+b=0
=a+1-2+b=0
=a+b=1 ...(2)
Adding equation (1) and (2),
a+b-a+b=1-3
=2b=-2
=b=-1
Putting b=(-1) in equation (2),
a+(-1)=1
=a-1=1
=a=2
Therefore, a=2 and b= -1.
Similar questions
Math,
8 months ago
Science,
8 months ago
Physics,
1 year ago
India Languages,
1 year ago
English,
1 year ago