Math, asked by Piyush97739, 10 months ago

If both (x+2) and(2x-1) are factors of ax^2+2x+b then the value of a-b is

Answers

Answered by mysticd
1

 Let \: the \: polynomial \:p(x) = ax^{2}+2x+b

 Given \: (x+2) \:and \:(2x-1) \:are \:two \\ factors\: of \: p(x)

 i ) If \: (x+2) \:is \: a \: factor \:p(x) \: then \\p(-2) = 0

 a\times 2^{2} + 2\times (-2) + b = 0

 \implies 4a - 4 + b = 0\: --(1)

 ii ) If \: (2x-1) \:is \: a \: factor \:p(x) \: then \\p\big(\frac{1}{2}\big) = 0

 a\times \big(\frac{1}{2}\big)^{2} + 2\times \frac{1}{2} + b = 0

 \implies \frac{a}{4} + 1+ b = 0 \: --(2)

/* Subtract equation (2) from equation (1), we get */

 4a - \frac{a}{4} - 5 = 0

/* Multiplying each term by 4, we get */

 \implies 16a - a - 20 = 0

 \implies 15a = 20

 \implies a = \frac{20}{15}

 \implies a = \frac{4}{3} \:--(3)

/* Now , put value of a in equation (1) , we get */

 \implies 4\times \big(\frac{4}{3}\big) - 4 + b = 0

 \implies \frac{16-12}{3} + b = 0

 \implies \frac{4}{3} + b = 0

 \implies b = \frac{-4}{3}

Therefore.,

 \green {a = \frac{4}{3} \: and \: b = \frac{-4}{3} }

•••♪

Answered by malo5912
1

Answer:

Find x then solve the expression

Similar questions