Math, asked by pranita70, 1 year ago

if both x-2 and x-1/2 are factors of
p {x}^{2}  + 5x + r
then show that p=r.

Answers

Answered by gorishankar2
1
let p(x)=px²+5x+r.Since x-2 ad x-1/2 are factors of p(x).
p(2)=0 and p(1/2)=0
p×2²+5×2+r=0  and  p(1/2)²+5×1/2+r=0

4p+10+r=0 and p/4+5/2+r=0

4p+r=-10 and p+4r+10=0
                         4

4p+r=-10 and p+4r+10=0

4p+r=-10 and p+4r=-10

4p+r=p+4r

3p=3r

 ⇒ p=r
Attachments:
Answered by Divyaalia
3

hey \: mate \: here \: is \: your \: answer...
_____________________________

px {}^{2}  +5x + r = 0 \\ on \: putting \: x = 2 \\  \\ p(2) {}^{2}  + 5(2) + r = 0 \\  \:  \:  \:  \:  \: p(4) + 10 + r = 0 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  4p + 10 + r = 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 4p + r =  - 10 \:  \:   \:  \:  \:  \:  \:  - (1)


on \: putting \: x =  \frac{1}{2}  \\  \\ p( \frac{1}{2} ) {}^{2}  + 5( \frac{1}{2} ) + r = 0 \\  \\  \:  \:  \:  \:  \:  \:  \: p( \frac{1}{4} ) +  \frac{5}{2}  + r = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{p}{4}  +  \frac{5}{2}  + r = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:    \frac{p + 10 + 4r}{4}  = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  p + 10 + 4r = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  p + 4r =  - 10 \:  \:  \:  \:  - (2)


on \: multipying \: equation \:( 1 )\: by \: 4  \\ \: and \: equation \: (2) \: by \: 1

16p + 4r =  - 40 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (3) \\  \:  \:  \:  \:  p + 4r =  - 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (4)

on \: subtracting \: equation \: (4) \:  \\ from \: (3)


we \: get  \:  \:  \:  \: 15p =  - 30  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: p =  \frac{ - 30}{15}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  p =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (5)

on \: putting \: the \: value \: of \: p \: in \: \\  equation \:  (1)

4( - 2) + r =  - 10 \\  \:  \:  \:  \:  \:  \:  - 8 + r =  - 10 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  r =  - 10 + 8 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  r =  - 2 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - (6)


from \: equation \: (5) \: and \: (6) \\   p = r \\  \\ hence \: proved...


__________________________________

hope \: it \: helps....



pranita70: u r welcome:)
Similar questions