Math, asked by arsh625, 1 year ago

if both (x-2) and (x-1/2)are the factor of px²-5x+r show that p=r​

Answers

Answered by Siddharta7
16

Given, f(x) = px^2+5x+r  and factors are x-2, x-1/2

Substitute x = 2 in place of equation, we get

= p*2^2+5*2+r=0  

=  4p + 10 + r = 0   ------------  (i)

Substitute x = 1/2 in place of equation.  

 p/4 + 5/2 + r = 0

 p + 10 + 4r = 0  -------------------  (ii)

On solving (i),(ii) we get

4p+r=-10 and p+4r+10=0

4p+r=p+4r

3p=3r   

p = r.

Hope this helps!

Answered by MysticalStar07
18

 \red {★★★★☆☆☆✭✭✮✭✭☆☆☆★★★★}

\bf f(x) = p {x}^{2}  + 5x + r

\bf f(2) = p(2 {)}^{2}  +  {5}^{2}  + r

\bf p(4) + 10 + r = 0 \\ \bf 4p + 10 + r = 0 \\ \bf 4p + r = 0 - 10 \\ \bf 4p + r =  - 10⇒(1)

\blue{━━━━━━━━━━━━━━━━}

\bf f(x) = p {x}^{2}  + 5x + r \\ \bf f( \dfrac{1}{2}) = p( \dfrac{1}{2})  +  r = 0 \\ \bf p( \dfrac{1}{4} )  +  \dfrac{5}{2}  + r = 0

\bf \dfrac{p + 10 + 4r}{4}  = 0 \\ \bf p + 10 + 4r = 0(4) \\ \bf p +4r = 0 - 10 \\ \bf  p + 4r =  - 10⇒(2)

\green{━━━━━━━━━━━━━━━━}

\bf From \: (1) \: and \: (2)

\bf 4p + r =  - 10(1) \\ \bf p + 4r =  - 10(2)

\bf 4p + r = p + 4r \\ \bf 4p - p = 4r - r \\ \bf 3p = 3r \\ \bf p =  \dfrac{3r}{3}  \\ \therefore p = r

 \red{★★★★☆☆☆✭✭✮✮✮☆☆☆★★★★}

Similar questions