Math, asked by lakshya6889, 11 months ago

If bx + ay = a^2 + b^2 and ax - by = 0, then the value of x - y equals:
(a) a - b
(b) b - a
(c) a^2 - b^2
(d) b^2 + a²

Answers

Answered by Anonymous
21

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If bx + ay = a² + b² and ax - by = 0, then the value of x - y equals:

(a) a - b

(b) b - a

(c) a^2 - b^2

(d) b^2 + a²

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • bx + ay = a² + b² ............(1)
  • ax - by = 0 .................(2)

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • Value of (x - y )

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

multiply by "a" in equ(1) and " b" in equ(2)

  • ab x + a² y = a³ + ab²
  • ab x - b² y = 0

________________Sub. its,

\mapsto\sf{\:y(a^2+b^2)\:=\:(a^3+ab^2)} \\ \\ \mapsto\sf{\:y\:=\:\dfrac{a\cancel{(a^2+b^2)}}{\cancel{(a^2+b^2)}}} \\ \\ \mapsto\sf{\orange{\:y\:=\:a}}

keep value of "y" in equ(2),

\mapsto\sf{\:(ax-ba)\:=\:0} \\ \\ \mapsto\sf{\:ax\:=\:ba} \\ \\ \mapsto\sf{\:x\:=\:\dfrac{b\cancel{a}}{\cancel{a}}} \\ \\ \mapsto\sf{\orange{\:x\:=\:b}}

\Large{\underline{\mathfrak{\bf{\blue{Thus}}}}}

  • Value of x = b
  • Value of y = a

Now,

\mapsto\sf{\green{\:(x-y)}} \\ \\ \small\sf{\:\:\:\:(Keep\:Value\:of\:x\:and\:y)} \\ \\ \mapsto\bf{\:(b-a)}

Hence,

\sf{\green{\:(Answer\:will\:be\:option\:number\:(a)}}

\Large{\underline{\underline{\mathfrak{\bf{Answer\:Verification}}}}}

keep value of "x" and "y" in equ(1)

\mapsto\sf{\:b.(b)+a.(a)\:=\:(a^2+b^2)} \\ \\ \mapsto\sf{\:(a^2+b^2)\:=\:(a^2+b^2)} \\ \\ \bf{\:\:\:\:L.H.S.\:=\:R.H.S.}

That's prived.

Hence, we can say that our solution is absolutely right .

Answered by TrickYwriTer
17

Step-by-step explanation:

\huge\underline\bold{Question-} \\ If \:  bx  +  ay  =  a {}^{2}   -  b {}^{2}   \: and \:  ax  -  by  =  0, \\  then \:  find  \: the  \: value \:  of \:  x - y  \: equals -  \\  (a) a  -  b  \\ (b) b - a \: \: \bold{(Correct)}  \\ (c) a {}^{2}   -  b {}^{2}  \\  (d) b {}^{2}  + a {}^{2}

\huge\underline\bold{Solution-}

 \bold{Given -} \\ bx + ay =  {a}^{2}  +  {b}^{2}.....(a)  \\ ax - by = 0 \: .....(b) \\  \\  \bold{To \: find - } \\ x - y =  \:  ? \\ \\ Now, \\ ax = by \: .... \bold{from \: (b)} \\   \bold{y =  \frac{ax}{b} } \:  \bold{or} \:   \bold{x =  \frac{by}{a} } \\  \\  \bold{Substituting \: the \: value \: of \: y \: on \: (a)} \\ \\ bx + a( \frac{ax}{b} ) =  {a}^{2}  +  {b}^{2}  \\  = bx +  \frac{ {a}^{2}x }{b}  =  {a}^{2}  +  {b}^{2}  \\ =   \frac{ {b}^{2}x +  {a}^{2}x  }{b}  =  {a}^{2}  +  {b}^{2} \\ =   x( {a}^{2}  +  {b}^{2} ) =  {a}^{2} b +  {b}^{ 3}  \\    =  \bold{x =  \frac{ {a}^{2}b +  {b}^{3}  }{ {a}^{2}  +  {b}^{2} } } Now, \\  \bold {Substituting \:  the \:  value   \: of \: x   \: on \:  (a)}  \\   b( \frac{by}{a} ) + ay =  {a}^{2}  +  {b}^{2}  \\  =  \frac{ {b}^{2}y }{a}  + ay =  {a}^{2}  +  {b}^{2}  \\  =  \frac{ {b}^{2}y +  {a}^{2}y  }{a}  =  {a}^{2}  +  {b}^{2}  \\  = y( {a}^{2}  +  {b}^{2} ) =  {a}^{3}  +  a{b}^{2}  \\    =   \bold{y =  \frac{ {a}^{3}  + a {b}^{2} }{ {a}^{2}  +  {b}^{2} } } Now, \\ x - y =  \\  \\  =  \frac{ {a}^{2}b +  {b}^{3}  }{ {a}^{2} +  {b}^{2}  }  -  \frac{ {a}^{3} + a {b}^{2}  }{ {a}^{2}  +  {b}^{2} }  \\  =  \frac{ {a}^{2}b +  {b}^{3}  -  {a}^{3}   - a {b}^{2}  }{ {a}^{2} +  {b}^{2}  }  \\   = \frac{b( {a}^{2} +  {b}^{2} ) - a( {a}^{2}   +  {b}^{2}) }{ {a}^{2}  +  {b}^{2} }  \\   =  \frac{ \cancel{( {a}^{2}  +  {b}^{2} )}(b - a)}{ \cancel{( {a}^{2} +  {b}^{2}  )}}  \\   = b - a \\  \\ Hence, \\  \bold{The \: value \: of \: x - y \: is \: b - a}

Similar questions