Math, asked by spshah4801, 11 months ago

If c (-1,k) is a point on the line passing through the points A(2,4) and B(4,8) which number is K

Answers

Answered by BrainlyPopularman
5

Question :

If C(-1,k) is a point on the line passing through the points A(2,4) and B(4,8) then find which number is K.

ANSWER :

 \\  \to {  \boxed { \bold{k  =  - 2 }}} \\

EXPLANATION :

GIVEN :

A point C(-1,k) passing from a line which is passing through the points A(2,4) and B(4,8).

TO FIND :

• Value of 'k'.

SOLUTION :

▪︎First , we have to find a line which is passing from A(2,4) and B(4,8).

▪︎ We know that –

Equation of line which is passing from (a,b) and (c,d) is –

 \\  \implies { \boxed{ \bold{(y - b) =[ \dfrac{(d - b)}{(c - a)}](x -  a)}}} \\

• Here –

 \\  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{a = 2}}\\

 \\  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{b = 4}}\\

 \\  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{c = 4}}\\

 \\  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{d = 4}}\\

• Now put the values –

 \\  \implies { \bold{(y - 4) =[ \dfrac{(8 - 4)}{(4 -  2)}](x -  2)}} \\

 \\  \implies { \bold{(y - 4) = \dfrac{4}{2}(x -  2)}} \\

 \\  \implies { \bold{(y - 4) = 2(x -  2)}} \\

 \\  \implies { \bold{y - 4 = 2x -  4}} \\

 \\  \implies { \boxed{ \bold{y  = 2x }}} \\

• But point c(-1 , k) passing from the line . So that –

 \\  \implies { \bold{k  = 2( - 1) }} \\

 \\  \implies {  \boxed { \bold{k  =  - 2 }}} \\

Hence , The value of k = -2

Similar questions