Math, asked by susilkumar71974, 9 months ago

If C and Z are acute angles and that cos C = cos Z prove that ∠C = ∠Z?​

Answers

Answered by boranayashneel23
15

Answer:

Step-by-step explanation:

Given C and Z are acute angles and cos C = cos Z

cos C = BCAC and cos Z = YZXZ

cos C = cos Z =>BCAC= YZXZ

Let BCYZ= ACXZ = k..... (1)

BC = k(yz) and AC = k(xz)

In right triangle ABC, using Pythagoras theorem AB = AC2−BC2−−−−−−−−−−√

AB = (k(xz)2−(k(yz)2)−−−−−−−−−−−−−−√= k(xz)2−(yz)2−−−−−−−−−−√

In right triangle xyz, using Pythagoras theorem xy = (xz)2−(yz)2−−−−−−−−−−√

ABXY = K×(XZ)2−(YZ)2√(XZ)2−(YZ)2√

Or ABXY = k ..... (1)

From 1 and 2, BCYZ = ACXZ = ABXY = k

By SSS similarity criterion, we can conclude ΔABC is similar to ΔXYZ

∴ Corresponding angles of two similar triangles will be equal.

∴ ∠C = ∠Z

Answered by mysticd
35

 Given \: cos \angle C = cos \angle Z

 We \:have \: Cos \angle C = \frac{CB}{CA}

 and \: Cos \angle Z = \frac{ZY}{ZX}

 Given \: cos \angle C = cos \angle Z\implies \frac{CB}{CA} =  \frac{ZY}{ZX} \: --(1)

 From \:(1) \: CB = k \times ZY

 and \: AC = k \times ZX \: ( Where \: k\in R^{+} )

 From \: rt. angled /: triangle \: ABC ,

 AB = \sqrt{ AC^{2} - CB^{2}}

 = \sqrt{ ( k \times ZX)^{2} - ( k \times ZY)^{2} }

 = k\sqrt{ ZX^{2} - ZY^{2}}

 From \: rt. angled \: triangle \: XYZ , XY = \sqrt{ZX^{2} - ZY^{2}}

 So, \frac{BA}{YX} = \frac{ k\sqrt{ZX^{2} - ZY^{2}}}{\sqrt{ZX^{2} - ZY^{2}}} = k \: --(2)

 From \: (1) \:and \:(2) \: we \:get \:

 \frac{CB}{ZY} = \frac{CA}{ZX} = \frac{AB}{XY}

 \therefore \triangle ABC \sim \triangle XYZ

 ( By \: S.S.S \: Similarity \: Criterion )

 \therefore \angle C = \angle Z

 \blue { ( Since, \: Corresponding \:angles}

\blue {( of \:two \: similar \: triangles \:are \: equal )}

•••♪

Attachments:
Similar questions