Math, asked by singhshivans86, 4 months ago

if C divides the line AB in 1:2 ratio then find the coordonate of C.where coordinate of A and B are (5,8) and (1,-3) respectively​

Answers

Answered by snehitha2
3

Answer :

The coordinates of point C -  \bf (\frac{11}{3},\frac{13}{3})

Step-by-step explanation :

Let the coordinates of C be (x , y)

It divides the line AB on the ratio 1 : 2

So, let m = 1 , n = 2

The coordinates of points A and B are (5 , 8) and (1 , -3) respectively.

Let A (5 , 8) = (x₁ , y₁)

     B (1 , -3) = (x₂ , y₂)

  • x₁ = 5
  • x₂ = 1
  • y₁ = 8
  • y₂ = -3

If a point of coordinates (x , y) divides the line joining the two points (x₁ , y₁) and (x₂ , y₂) in the ratio m : n , then

  \implies \sf x=\frac{mx_2+nx_1}{m+n} \\\\ \implies y=\frac{my_2+ny_1}{m+n}

Substituting the values,

x - coordinate is :

     \sf x=\frac{1(1)+2(5)}{1+2} \\\\ x=\frac{1+10}{3} \\\\ x=\frac{11}{3}

y - coordinate is :

    \sf y=\frac{1(-3)+2(8)}{1+2} \\\\ y=\frac{-3+16}{3} \\\\ y=\frac{13}{3}

The coordinates of the point C is  \bf (\frac{11}{3},\frac{13}{3})

Similar questions