Math, asked by tanvirana1616, 1 year ago

If c is a skew symmetric matrix of order n×n and x is a column matrix of order n×1 then prove that xtcx=0

Answers

Answered by Agastya0606
1

Given: c is a skew symmetric matrix of order n×n and x is a column matrix of order n×1.

To find: Prove that x^T * c * x = 0

Solution:

  • As we have given that c is skew symmetric matrix of order nxn, so let the value of n be 3 and matrix be:

                     \left[\begin{array}{ccc}0&2&3\\-2&0&4\\-3&-4&0\end{array}\right]

  • Also let x be matrix as:

                     \left[\begin{array}{c}1&2&3\\\end{array}\right]

  • Now x^T will be:

                     \left[\begin{array}{ccc}1&2&3\\\end{array}\right]

  • Now we have to evaluate x^T * c * x
  • So,

                   =   \left[\begin{array}{ccc}1&2&3\\\end{array}\right]\left[\begin{array}{ccc}0&2&3\\-2&0&4\\-3&-4&0\end{array}\right]\left[\begin{array}{ccc}1\\2\\3\end{array}\right]

  • So, we get:

                   =   \left[\begin{array}{ccc}-13&-10&11\end{array}\right]\left[\begin{array}{ccc}1\\2\\3\end{array}\right]

                   =   [0]

  • Hence proved.

Answer:

             So we have proved that x^T * c * x = 0.

Similar questions