Math, asked by Taris351, 2 months ago

if c=log 15 to the base 10, d= log 50 to the base 20 then show that (5-d)/(2(c-2d+cd+1)=log 40 to the base 9​

Answers

Answered by pulakmath007
25

SOLUTION

GIVEN

 \displaystyle \sf{c =  log_{10} 15  \:  \: and \:  \: d =   log_{20} 50 }

TO PROVE

 \displaystyle \sf{ \frac{5 - d}{2(c - 2d + cd + 1)} =   log_{9} 40 }

EVALUATION

Here it is given that

 \displaystyle \sf{c =  log_{10} 15  \:  \: and \:  \: d =   log_{20} 50 }

Now

 \displaystyle \sf{c =  log_{10} 15  }

 \displaystyle \sf{ \implies \: c =   \frac{  log 15 }{ log 10 }  }

 \displaystyle \sf{ \implies \: c =   \frac{  log 5 + log 3 }{1}  }

 \displaystyle \sf{ \implies \: c =   log 2 +   log 5 + log 3  -  log 2  }

 \displaystyle \sf{ \implies \: c =   log 10 + log 3  -  log 2  }

 \displaystyle \sf{ \implies \: c =   1 + log 3  -  log 2  } \:  \:  \:  -  -  - (1)

Again

 \displaystyle \sf{  \: d =  log_{20} 50   }

 \displaystyle \sf{ \implies \: d =  \frac{ log 50}{ log 20}    }

 \displaystyle \sf{ \implies \: d =  \frac{ log 10 + log 5}{ log 10 + log 2}    }

 \displaystyle \sf{ \implies \: d =  \frac{ 1 + log 5}{ 1 + log 2}    }

 \displaystyle \sf{ \implies \: d =  \frac{ 1 + log 5 + log 2 - log 2}{ 1 + log 2}    }

 \displaystyle \sf{ \implies \: d =  \frac{ 1 + log 10 - log 2}{ 1 + log 2}    }

 \displaystyle \sf{ \implies \: d =  \frac{ 1 + 1 - log 2}{ 1 + log 2}    }

 \displaystyle \sf{ \implies \: d =  \frac{ 2 - log 2}{ 1 + log 2}    }

 \displaystyle \sf{ \implies \: (1 + log 2)d =  2 - log 2  }

 \displaystyle \sf{ \implies \:  log 2 \times (d  + 1)=  2 - d  }

 \displaystyle \sf{ \implies \:  log 2=   \frac{2 - d}{d + 1}  } \:  \:  -  -  -  - (2)

From Equation 1 we get

 \displaystyle \sf{  \: c =   1 + log 3  -  log 2  }

 \displaystyle \sf{ \implies \:  log 3   = c - 1 +   log 2  }

 \displaystyle \sf{ \implies \:  log 3   = c - 1 +   \frac{2 - d}{d + 1}    }

 \displaystyle \sf{ \implies \:  log 3   =    \frac{cd + c - d - 1 + 2 - d}{d + 1}    }

 \displaystyle \sf{ \implies \:  log 3   =    \frac{cd + c - 2d  +1}{d + 1}    }  \:  \:  -  - (3)

Now RHS

 \displaystyle \sf{ =   log_{9} 40 }

 \displaystyle \sf{ =  \frac{ log 40}{log 9}  }

 \displaystyle \sf{ =  \frac{ log 10 + log 4 }{2log 3}  }

 \displaystyle \sf{ =  \frac{ 1+2 log 2 }{2log 3}  }

 \displaystyle \sf{ =  \frac{ 1+2 \bigg( \frac{2 - d}{d + 1}  \bigg)}{2 \bigg( \frac{cd + c - 2d  +1}{d + 1}  \bigg)}  }

 \displaystyle \sf{ =  \frac{  \bigg( \frac{d + 1 + 4 - 2d}{d + 1}  \bigg)}{2 \bigg( \frac{cd + c - 2d  +1}{d + 1}  \bigg)}  }

 \displaystyle \sf{ =  \frac{  \bigg( \frac{5 - d}{d + 1}  \bigg)}{2 \bigg( \frac{cd + c - 2d  +1}{d + 1}  \bigg)}  }

 \displaystyle \sf{  = \frac{5 - d}{2(c - 2d + cd + 1)} }

= LHS

Thus we get

  \boxed{ \:  \: \displaystyle \sf{ \frac{5 - d}{2(c - 2d + cd + 1)} =   log_{9} 40 } \:  \: }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206


amansharma264: Excellent
pulakmath007: Thank you Brother
Similar questions