If C(n+2,8) : P(n-2,4) = 57:16, find the value of n.
where Symbol have the usual meanings.
Answers
Answer:
n = 19
Step-by-step explanation:
Given :-
C(n+2,8) : P(n-2,4) = 57:16
To find :-
Find the value of n ?
Solution :-
Given that
C(n+2,8) : P(n-2,4) = 57:16
C(n+2,8) /P(n-2,4) = 57/16 -----(1)
We know that
n C r = n! / (r! × (n-r)!
Now,
C(n+2,8) = (n+2) C 8
Where , n = n+2 and r = 8
=> (n+2)! / ( 8! × (n+2-8)!)
=> (n+2)! / ( 8!×(n-6)!)
=>(n+2)(n+1)(n)(n-1)(n-2)(n-3)(!/(8!×(n-6)!)
=(n+2)(n+1)(n)(n-1)(n-2)(n-3)(n-4)(n-5)/8!
-------(2)
and
We know that
nPr = n! / (n-r)!
P(n-2,4) = (n-2) P 4
Where , n = n-2 and r = 4
=> (n-2)! /(n-2-4)!
=> (n-2)!/(n-6)!
=> (n-2)(n-3)(n-4)(n-5)(n-6)!/(n-6)!
=> (n-2)(n-3)(n-4)(n-5) -------------(3)
On dividing (1) by (2)
=>[(n+2)(n+1)(n)(n-1)(n-2)(n-3)(n-4)(n-5)/8!]/[(n-2)(n-3)(n-4)(n-5)]
=> (n+2)(n+1)(n)(n-1)/8!
According to the given problem
=> (n+2)(n+1)(n)(n-1)/8! = 57/16
=> (n+2)(n+1)(n)(n-1)/(8×7×6×5×4×3×2×1) = 57/16
=> (n+2)(n+1)(n)(n-1)/40320 = 57/16
=> (n+2)(n+1)(n)(n-1)/2520 = 57
=> (n+2)(n+1)(n)(n-1) = 57×2520
=> (n+2)(n+1)(n)(n-1) = 143640
143640 can be written as 21×20×19×18
=> (n+2)(n+1)(n)(n-1) = 21×20×19×18
=> (n-1)(n)(n+1)(n+2) = 18×19×20×21
=> (n-1)(n)(n+1)(n+2) = (19-1)(19)(19+1)(19+2)
On comparing both sides then
=> n = 19
Therefore, n = 19
Answer:-
The value of n for the given problem is 19
Used formulae:-
→ n C r = n! / (r! × (n-r)!
→ nPr = n! / (n-r)!
→ n ! = (n)(n-1)(n-2)(n-3)...(3)(2)(1)
→ a:b can be written as a/b