If c²+6b=7,8a-b²=23 and 10c-a²=34 then a+b²+c³=
Answers
Answered by
3
Given info : c² + 6b = 7, 8a - b² = 23 and 10c - a² = 34.
To find : the value of a + b² + c³ = ?
solution : c² + 6b = 7 ...(1)
8a - b² = 23 ...(2)
and 10c - a² = 34 ...(3)
from equations (1) , (2) and (3) we get,
(c² + 6b) - (8a - b²) - (10c - a²) = 7 - 23 - 34
⇒(a² - 8a) + (b² + 6b) + (c² - 10c) = -50
⇒(a² - 8a + 16) + (b² + 6b + 9) + (c² - 10c + 25) = -50 + 16 + 9 + 25 = 0
⇒(a - 4)² + (b + 3)² + (c - 5)² = 0
⇒a = 4 , b = -3 and c = 5
so, the value of a + b² + c³ = 4 + (-3)² + 5³
= 4 + 9 + 125
= 138
Therefore the value of a + b² + c³ is 138.
Answered by
1
Answer:
Hope it help you
Have a good day
Attachments:
Similar questions