Math, asked by anupamsingh38, 8 months ago

if cas A=4/5 , than find the value of tan A & sin A​

Answers

Answered by anindyaadhikari13
2

\star\:\:\:\sf\large\underline\blue{Question:-}

  • If \sf \cos(x)  =  \frac{4}{5} , then find the value of \sf \tan(x) and  \sf \sin(x)

\star\:\:\:\sf\large\underline\blue{Solution:-}

We know that,

 \sf { \sin}^{2} (x) +  {  \cos }^{2} (x) = 1

 \sf { \sin}^{2} (x) = 1 -   {  \cos }^{2} (x)

 \sf { \sin} (x) =  \sqrt{1 -   {  \cos }^{2} (x) }

Therefore,

 \sf \sin(x)

 \sf =  \sqrt{1 -  \frac{ {4}^{2} }{ {5}^{2} } }

 \sf =  \sqrt{ \frac{ 25 - 16 }{ 25} }

 \sf =  \sqrt{ \frac{ 9 }{ 25} }

 \sf =  \frac{3}{5}

Therefore,

 \sf \sin(x)  =  \frac{3}{5}

So,

 \sf \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }

  \sf=  \frac{3}{5}  \div  \frac{4}{5}

 \sf =  \frac{3}{4}

So,

 \sf \tan(x)  =  \frac{3}{4}

\star\:\:\:\sf\large\underline\blue{Answer:-}

 \sf \sin(x)  =  \frac{3}{5}

 \sf \tan(x)  =  \frac{3}{4}

Answered by yasmeen2005
1

Answer:

tanA = 3/4

sinA = 3/5

HOPE YOU AGREE.

Attachments:
Similar questions