Math, asked by ankeetpattanaik, 1 month ago

If centroid of ∆ABC, with B=(-2,5), C=(1,2)
lie on the line 3x+4y= 7, then locus of A, is​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

B\equiv(-2,5)\:\:\:\&\:\:\:C\equiv(1,2)

\tt\green{Let\:\:the\:\:coordinates\:\:of\:\:A\:\:be}\:\:\blue{(h,k)}\\

Now,

Coordinates of centroid is given by

 \alpha  \equiv  \bigg( \frac{ - 2 + 1 + h}{3}   \bigg) \:  \:  \: and \:  \:  \:  \beta  \equiv \bigg(  \frac{5 + 2 + k}{3} \bigg)\\

Since, the centroid lies on the line \sf{3x+4y=7}, so,

3 \alpha  + 4 \beta  = 7

 \implies \: 3  \bigg(  \frac{ - 1 + h}{3} \bigg)  + 4 \bigg(  \frac{7 + k}{3} \bigg)  = 7 \\

 \implies \: (  - 1 + h)  +   \frac{4(7 + k)}{3}  = 7 \\

 \implies \: 3(  - 1 + h)  +   4(7 + k)  = 21 \\

 \implies \:  - 3 + 3h  +   28 + 4k  = 21 \\

 \implies \:   3h  +   25 + 4k  = 21 \\

 \implies \:   3h  + 4k  + 4 = 0 \\

So,

\large{\sf{\red{ LOCUS\colon\:\:3x+4y+4=0} } }

Similar questions