Math, asked by kavithaurs2628, 11 months ago

If circular metal sheet is 0.65cm thick and of 50cm in diameter is melted and recast into cylindrical bar with 8cm diameter then the length of bar is

Answers

Answered by pinkusanyal89
12

Answer:

  • Length of the cylindrical bar is 25.39 cm. (approx.)

Step-by-step explanation:

Thick / Height (h) of the circular metal sheet is 0.65 cm. = \frac{65}{100}

Radious (r) of the sheet = \frac{Diameter}{2}

                                   = \frac{50}{2} = 25 cm.

Therefore, volume of the circular metal sheet = \pi r^{2}h

                                                                           = \pi 25^{2}\frac{65}{100} cm^{3}

Let, Height of the cylindrical bar is (H)

Radious (R) of the base of cylindrical bar = \frac{Diameter}{2}  = \frac{8}{2} =4 cm

Therefore, Volume of the cylindrical bar = \pi R^{2} H = \pi 4^{2}H cm^{3}

Since, circular metal sheet is melted and recast into cylindrical bar

So,

    volume of the circular metal sheet = Volume of the cylindrical bar

\pi 25^{2}\frac{65}{100}      =    \pi 4^{2} H

H= \frac{25^{2}\frac{65}{100}  }{4^{2} }  =25.390625 cm = 25.39 cm (approx.)

                                                                           

Answered by thilipkavin
1

Step-by-step explanation:

Answer:

Length of the cylindrical bar is 25.39 cm. (approx.)

Step-by-step explanation:

Thick / Height (h) of the circular metal sheet is 0.65 cm. = \frac{65}{100}

100

65

Radious (r) of the sheet = \frac{Diameter}{2}

2

Diameter

= \frac{50}{2}

2

50

= 25 cm.

Therefore, volume of the circular metal sheet = \pi r^{2}hπr

2

h

= \pi 25^{2}\frac{65}{100}π25

2

100

65

cm^{3}cm

3

Let, Height of the cylindrical bar is (H)

Radious (R) of the base of cylindrical bar = \frac{Diameter}{2}

2

Diameter

= \frac{8}{2}

2

8

=4 cm

Therefore, Volume of the cylindrical bar = \pi R^{2} HπR

2

H = \pi 4^{2}Hπ4

2

H cm^{3}cm

3

Since, circular metal sheet is melted and recast into cylindrical bar

So,

volume of the circular metal sheet = Volume of the cylindrical bar

⇒ \pi 25^{2}\frac{65}{100}π25

2

100

65

= \pi 4^{2} Hπ4

2

H

⇒H= \frac{25^{2}\frac{65}{100} }{4^{2} }H=

4

2

25

2

100

65

=25.390625 cm = 25.39 cm (approx.)

Similar questions