Math, asked by rishav1423, 5 months ago

if circumference of a circle is 176 cm, find its radius.





plz find ANSWER​

Answers

Answered by monijeena1096
1

this is the correct answer plzz mark as brainliest

Attachments:
Answered by Anonymous
199

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Given:}}}}}}}\end{gathered}

  • ● The circumference of a circle is 176 cm

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{To Find:}}}}}}}\end{gathered}

  • ● Radius

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Formula Used :}}}}}}}\end{gathered}

\dag{\underline{\boxed{\sf{Circumference \:  of \:  Circle =2{\pi}r}}}}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Solution:}}}}}}}\end{gathered}

 \bigstar{\underline{\frak{Let \: the}}}

\begin{gathered} \\ \end{gathered}

  • Radius of circle be "x" cm

\begin{gathered} \\ \end{gathered}

\bigstar{\underline{\frak{According \: To \: The \: Question}}}

\begin{gathered} \\ \end{gathered}

 \quad{: \implies{\sf{Circumference \:  of \:  Circle =2{\pi}r}}}

\begin{gathered} \\ \end{gathered}

  • Substituting the values

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{2 \times {\dfrac{22}{7}} \times x}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{\dfrac{44}{7}} \times x}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 \times  {\dfrac{7}{44}}= \bf{x}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{\cancel{176} \times  {\dfrac{7}{\cancel{44}}}= \bf{x}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{4 \times7}= \bf{x}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{x}= \bf{28}}}

\begin{gathered} \\ \end{gathered}

\dag{\underline{\boxed{\rm{\pink{Radius = 28}}}}}

  • ● Henceforth,The Radius of Circle is 28 cm.

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Verification:}}}}}}}\end{gathered}

 \bigstar{\underline{\frak{Checking \:  our  \: answer}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{Circumference \:  of \:  Circle =2{\pi}r}}}

\begin{gathered} \\ \end{gathered}

  • Substituting the values

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{2 \times {\dfrac{22}{7}} \times 28}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{2 \times {\dfrac{22}{7}} \times 28}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{2 \times {\dfrac{22}{\cancel{7}}} \times \cancel{28}}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{2 \times 22\times 4}}}}

\begin{gathered} \\ \end{gathered}

\quad{: \implies{\sf{176 = \bf{176}}}}

\begin{gathered} \\ \end{gathered}

\dag{\underline{\boxed{\rm{\pink{LHS=RHS }}}}}

  • ● Hence Verified ꪜ

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Diagram:}}}}}}}\end{gathered}

\bigstar{\underline{\frak{Diagram \: of \: Circle}}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 28\ cm}\end{picture}

  • Request: Please see the answer from website Brainly.in..
  • Check the given attachment also

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Learn \: More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered} \small\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c}   \star\bf \underline{More \:  Useful  \: Formula } \star \\  \\ \ \leadsto\sf{Radius \: of \: Sphere = \dfrac{d}{2} } \\ \\ \leadsto\textsf{ Voume of cylinder = πr²h} \\  \\ \leadsto \textsf{ T.S.A of cylinder = 2πrh + 2πr²} \\ \\  \leadsto\textsf{ Volume of cone = ⅓ πr²h} \\  \\  \leadsto \textsf{C.S.A of cone = πrl }\\ \\   \leadsto\textsf{ T.S.A of cone = πrl + πr²} \\   \\  \leadsto\sf{ Volume\: of\: cuboid = l  \times b  \times  h} \\   \\ \leadsto\textsf{C.S.A of cuboid = 2(l + b)h }\\  \\   \leadsto\textsf{T.S.A of cuboid = 2(lb + bh + lh)} \\  \\ \leadsto \textsf{ C.S.A of cube = 4a² }\\ \\   \leadsto\textsf{T.S.A of cube = 6a²} \\ \\  \leadsto\textsf{Volume of cube = a³}  \\ \\  \leadsto\textsf{ Volume of sphere = (4/3)πr³ }  \\  \\  \leadsto\textsf{Surface area of sphere = 4πr²} \\  \\  \leadsto\textsf{Volume of hemisphere = ⅔ πr³} \\  \\  \leadsto\textsf{ C.S.A of hemisphere = 2πr² }\\ \\   \leadsto\textsf{ T.S.A of hemisphere = 3πr² } \\  \\ { \qquad \qquad \qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions