if codec theta=13/12, then evaluate 2sintheta-3costheta/4sintheta-9costheta
Answers
Answer:
Answer:
312/25
Step-by-step explanation:
Given that
tan \begin{gathered}\theta\\\end{gathered}
θ
= 12/13
To Evaluate
\frac{2 Sin\theta \ Cos\theta}{Cos^2\theta - Sin^2\theta}
Cos
2
θ−Sin
2
θ
2Sinθ Cosθ
Divide Numerator and Denominator by Cos^2\thetaCos
2
θ
\frac{\frac{2 Sin\theta \ Cos\theta}{Cos^2\theta} }{\frac{Cos^2\theta - Sin^2\theta}{Cos^2\theta} }
Cos
2
θ
Cos
2
θ−Sin
2
θ
Cos
2
θ
2Sinθ Cosθ
=> \frac{2 tan\theta}{1 - tan^2\theta}
1−tan
2
θ
2tanθ
=> \begin{gathered}\frac{2 *\frac{12}{13}}{1 - (\frac{12}{13})^2 } \\ \\= > \frac{ \frac{24}{13} }{1 - \frac{144}{169} }\\\\=> \frac{\frac{24}{13} }{\frac{25}{169} } \\\\=> \frac{24}{13} * \frac{169}{25} \\\\=> \frac{312}{25}\end{gathered}
1−(
13
12
)
2
2∗
13
12
=>
1−
169
144
13
24
=>
169
25
13
24
=>
13
24
∗
25
169
=>
25
312