Math, asked by yogeshdhande60, 4 hours ago

If coes A = 1/2, then find the value of sec²A | coses^2 A​

Answers

Answered by Aquilla5
0

Answer:

 \gray{  \dag}\huge \mathtt{\underline{ \red{A} \orange{n} \pink{s} \purple{w} \blue{e} \green{r} \orange{ \leadsto} \pink{}}}

We know that Sec^2A=1 + tan^2A

So

Sec²A=2tanA

1 + tan^2A=2tanA

Let tanA be x then eq. becomes

1+x^2=2x

1+x^2–2x=0

(1-x)^2=0. 【a^2+b^2–2ab=(a-b)^2】

I-x=0

X=1

tanA=1

So A= 45°. 【tan 45°=1】

Similar questions