If cos (0 + 20) = m cos 0, prove that : cot a = 1 + m tan (0 + a)
Answers
Answered by
0
Step-by-step explanation:
cos(θ+ϕ)
=m
Apply componendo and dividendo
cos(θ+ϕ)−cos(θ−ϕ)
cos(θ+ϕ)+cos(θ−ϕ)
=
m−1
m+1
−(cos(θ−ϕ)−cos(θ+ϕ))
cos(θ+ϕ)+cos(θ−ϕ)
=
m−1
m+1
−2sin(θ)⋅sin(ϕ)
2cos(θ)⋅cos(ϕ)
=
m−1
1+m
2sin(θ)⋅sin(ϕ)
2cos(θ)⋅cos(ϕ)
=
1−m
1+m
cotθ⋅cotϕ=
1−m
1+m
tanθ=(
1+m
1−m
)⋅cotϕ
Similar questions