If cos θ=0.6 show that (5sin θ -3tan θ) = 0
Answers
Answered by
2
cos θ = 0.6
cos θ = 6 / 10
cos θ = 3 / 5
As we know that
cos θ = Base / Hypotenuse = B / H
•°•
B / H = 3 / 5
Let B = 3x and H = 5x
Applying Pythagoras Theorem
( Hypotenuse )² = ( Base )² + ( Perpendicular )²
( H )² = ( B )² + ( P )²
( 5x )² = ( 3x )² + ( P )²
25x² = 9x² + P²
P² = 25x² - 9x²
P² = 16x²
( P )² = ( 4x )²
P = 4x
Now,
sin θ = Perpendicular / Hypotenuse
= P / H
= 4x / 5x
= 4 / 5
tan θ = Perpendicular / Base
= P / B
= 4x / 3x
= 4 / 3
Now,
5 sin θ - 3 tan θ
= 5 ( 4 / 5 ) - 3 ( 4 / 3 )
= 4 - 4
= 0
Hence proved.
cos θ = 6 / 10
cos θ = 3 / 5
As we know that
cos θ = Base / Hypotenuse = B / H
•°•
B / H = 3 / 5
Let B = 3x and H = 5x
Applying Pythagoras Theorem
( Hypotenuse )² = ( Base )² + ( Perpendicular )²
( H )² = ( B )² + ( P )²
( 5x )² = ( 3x )² + ( P )²
25x² = 9x² + P²
P² = 25x² - 9x²
P² = 16x²
( P )² = ( 4x )²
P = 4x
Now,
sin θ = Perpendicular / Hypotenuse
= P / H
= 4x / 5x
= 4 / 5
tan θ = Perpendicular / Base
= P / B
= 4x / 3x
= 4 / 3
Now,
5 sin θ - 3 tan θ
= 5 ( 4 / 5 ) - 3 ( 4 / 3 )
= 4 - 4
= 0
Hence proved.
Similar questions