If cos 0 + sin’O = m then
Answers
Answered by
0
tanθ+sinθ=m&tanθ−sinθ=n
⇒mn=(tanθ+sinθ)(tanθ−sinθ)
=tan
2
θ−sin
2
θ
=sin
2
θ(sec
2
θ−1)
=sin
2
θ×tan
2
θ
⇒m
2
−n
2
=(m+n)(m−n)
=(tanθ+sinθ+tanθ−sinθ)(tanθ+sinθ−tanθ+sinθ)
=4tanθsinθ
=4
mn
Hence, proved.
Similar questions