Math, asked by krishna12839, 11 months ago

If cos 0 +sin0 = V2 cose, then prove that
cose -o sin 0 = V2 sin ​

Answers

Answered by ShuchiRecites
56

Correct Question

If cos∅ + sin∅ = √2 cos∅, then prove that cos∅ - sin∅ = √2 sin∅.

Proof

→ cos∅ + sin∅ = √2 cos∅

→ sin∅ = √2 cos∅ - cos∅

→ sin∅ = cos∅(√2 - 1)

sin∅/(√2 - 1) = cos∅

On rationalizing we get,

→ sin∅/(√2 - 1) × (√2 + 1)/(√2 + 1) = cos∅

→ sin∅(√2 + 1)/(2 - 1) = cos∅

→ √2 sin∅ + sin∅ = cos∅

→ √2 sin∅ = cos∅ - sin∅

Or cos∅ - sin∅ = √2 sin∅

Hence Proved

Answered by Anonymous
42

Correct Question :-

 \sf{ If \: cos \theta + sin \theta = \sqrt{2} cos \theta}

\textsf{ Then prove that }

 \sf{ cos\theta - sin\theta = \sqrt{2} sin\theta }

Solution :-

Given :-

 cos\theta + sin\theta = \sqrt{2}cos\theta

Now by taking like terms on same side :-

 \rightarrow sin\theta =  \sqrt{2}cos\theta - cos\theta

 \rightarrow sin\theta = cos\theta( \sqrt{2} - 1 )

 \rightarrow \dfrac{sin\theta}{(\sqrt{2} - 1)} = cos\theta

Now we will rationalize the denominator :-

 \rightarrow \dfrac{sin\theta}{(\sqrt{2} - 1)} \times \dfrac{( \sqrt{2} + 1)}{( \sqrt{2} + 1)} = cos\theta

 \rightarrow \dfrac{ sin\theta(\sqrt{2} +1)}{(\sqrt{2})^2 - 1^2 } =  cos\theta

 \rightarrow \dfrac{ sin\theta(\sqrt{2} +1)}{2 - 1 } =  cos\theta

 \rightarrow \dfrac{ sin\theta(\sqrt{2} +1)}{1 } =  cos\theta

 \rightarrow \sqrt{2}sin\theta + sin\theta = cos\theta

 \rightarrow cos\theta - sin\theta = \sqrt{2}sin\theta

Hence Proved

Similar questions