Math, asked by mridushmitadas75, 6 months ago

If cos(α+β) = 0, then sin(α -β) can be reduced to:
(a) cosβ
(b) 2cosβ
(c) sinα
(d) 2sinα​

Answers

Answered by hydrogenshine1
1

Answer:

The correct answer is

 \cos(2 \beta )

Step-by-step explanation:

PLEASE MARK AS BRAINLIEST ANSWER

DON'T FORGET TO PRESS ON THANKS IF YOU FIND IT HELPFUL

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
2

Answer:

  • cos(α+β) = 0
  • sin(α-β) = ?

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

\displaystyle\sf :\implies cos(\alpha+\beta) = 0\\

  • So the value with cos θ as 0 is none other than cos 90°

\\\displaystyle\sf :\implies cos(\alpha+\beta) = cos 90^{\circ}\\\\

\displaystyle\sf :\implies \alpha+\beta = 90\\\\

\displaystyle\sf :\implies \alpha = 90-\beta\:\:\: -eq(1)

  • So now in sin(α-β) we shall substitute the value of α and on simple calculation we can get our answer!!

\displaystyle\sf \dashrightarrow sin(\alpha-\beta)\\\\

\displaystyle\sf \dashrightarrow sin(90-\beta-\beta)\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\texttt{ From eq(1)}}

\displaystyle\sf \dashrightarrow sin(90-2\beta)\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\tt{ sin(90-\theta) = cos\theta}}

\displaystyle\sf \dashrightarrow\underline{\boxed{\sf cos2\beta}}

\displaystyle\therefore\:\underline{\textsf{We can reduce it to \textbf{ cos2}}\bf\beta}

\begin{gathered}\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}\end{gathered}

Similar questions