Math, asked by Arun6423, 1 year ago

If cos-1(x/a) + cos-1(y/b) = alpha,
Prove that, x2/a2 + y2/b2 - 2xy/ab * [cos(alpha)]= sin2(alpha)​​

Answers

Answered by Swarup1998
367
➡HERE IS YOUR ANSWER⬇

 {cos}^{ - 1}  \frac{x}{a}  +  {cos}^{ - 1}  \frac{y}{b}  =   \alpha  \\  \\ or \:  \:  {cos}^{ - 1} ( \frac{x}{a}  \frac{y}{b}  +  \sqrt{(1 -  \frac{ {x}^{2} }{ {a}^{2} })(1 -  \frac{ {y}^{2} }{ {b}^{2} } ) })  =  \alpha  \\  \\ or \:  \:   \frac{x}{a}  \frac{y}{b}  +  \sqrt{(1 -  \frac{ {x}^{2} }{ {a}^{2} })(1 -  \frac{ {y}^{2} }{ {b}^{2} } ) } = cos \alpha  \\  \\ or \:  \: \sqrt{(1 -  \frac{ {x}^{2} }{ {a}^{2} })(1 -  \frac{ {y}^{2} }{ {b}^{2} } ) } = cos \alpha  -  \frac{x}{a}  \frac{y}{b}  \\  \\ squaring \:  \: both \:  \: sides \:  \: we \:  \: get \\  \\ (1 -  \frac{ {x}^{2} }{ {b}^{2} } )(1 -  \frac{ {y}^{2} }{ {b}^{2} } ) =  {(cos \alpha  -  \frac{xy}{ab} )}^{2}  \\  \\ or \:  \: 1 -   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  +  \frac{ {x}^{2} {y}^{2}  }{ {a}^{2} {b}^{2}  }  =  {cos}^{2}  \alpha  - 2 \frac{xy}{ab} cos \alpha  +  \frac{ {x}^{2} {y}^{2}  }{ {a}^{2}  {b}^{2} } \\  \\ cancelling \:  \:  \frac{ {x}^{2} {y}^{2}  }{ {a}^{2} {b}^{2}  }  \:  \: we \:  \: get \\  \\ 1 -  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  =  {cos}^{2}  \alpha  - 2 \frac{xy}{ab} cos \alpha  \\  \\ or \:  \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  - 2 \frac{xy}{ab} cos \alpha  = 1 -  {cos}^{2}  \alpha  \\  \\ or \:  \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  - 2 \frac{xy}{ab} cos \alpha  = {sin}^{2}  \alpha  \:  \: (proved)

⬆HOPE THIS HELPS YOU⬅

Anonymous: nice answer ^_^
Swarup1998: My pleasure [°_°]
silu5: good :D
Swarup1998: My pleasure (^...^)
Answered by Anonymous
14

Step-by-step explanation:

\begin{lgathered} \sf \: {cos}^{ - 1} \frac{x}{a} + {cos}^{ - 1} \frac{y}{b} = \alpha \\ \\  \sf \: or \: \: {cos}^{ - 1} ( \frac{x}{a} \frac{y}{b} + \sqrt{(1 - \frac{ {x}^{2} }{ {a}^{2} })(1 - \frac{ {y}^{2} }{ {b}^{2} } ) }) = \alpha \\ \\  \sf \: or \: \: \frac{x}{a} \frac{y}{b} + \sqrt{(1 - \frac{ {x}^{2} }{ {a}^{2} })(1 - \frac{ {y}^{2} }{ {b}^{2} } ) } = cos \alpha \\ \\  \sf \: or \: \: \sqrt{(1 - \frac{ {x}^{2} }{ {a}^{2} })(1 - \frac{ {y}^{2} }{ {b}^{2} } ) } = cos \alpha - \frac{x}{a} \frac{y}{b} \\ \\  \sf \large \green{squaring \: \: both \: \: sides \: \: we \: \: get} \\ \\  \sf \: (1 - \frac{ {x}^{2} }{ {b}^{2} } )(1 - \frac{ {y}^{2} }{ {b}^{2} } ) = {(cos \alpha - \frac{xy}{ab} )}^{2} \\ \\  \sf \: or \: \: 1 - \frac{ {x}^{2} }{ {a}^{2} } - \frac{ {y}^{2} }{ {b}^{2} } + \frac{ {x}^{2} {y}^{2} }{ {a}^{2} {b}^{2} } = {cos}^{2} \alpha - 2 \frac{xy}{ab} cos \alpha + \frac{ {x}^{2} {y}^{2} }{ {a}^{2} {b}^{2} } \\ \\  \sf \: cancelling \: \: \frac{ {x}^{2} {y}^{2} }{ {a}^{2} {b}^{2} } \: \: we \: \: get \\ \\  \sf \: 1 - \frac{ {x}^{2} }{ {a}^{2} } - \frac{ {y}^{2} }{ {b}^{2} } = {cos}^{2} \alpha - 2 \frac{xy}{ab} cos \alpha \\ \\  \sf \: or \: \: \frac{ {x}^{2} }{ {a}^{2} } + \frac{ {y}^{2} }{ {b}^{2} } - 2 \frac{xy}{ab} cos \alpha = 1 - {cos}^{2} \alpha \\ \\  \sf \orange{or \: \: \frac{ {x}^{2} }{ {a}^{2} } + \frac{ {y}^{2} }{ {b}^{2} } - 2 \frac{xy}{ab} cos \alpha = {sin}^{2} \alpha} \: \: (proved)\end{lgathered}  \\ </p><p>

Similar questions