If cos-1 x - cos-1 y/2 = alpha, then 4x2 - 4xy cos alpha + y2 = ? (a) 4 (b) 2sin2 alpha (c) -4sin2 alpha (d) 4sin2 alpha
Answers
Please see the attachment
given, cos-¹x - cos-¹(y/2) = α
we have to find value of 4x² - 4xycosα + y²
cos-¹x - cos-¹(y/2) = α
⇒cos-¹{xy/2 - √(1 - x²)√(2² - y²)/2} = α
⇒cosα = xy/2 - √(1 - x²)(4 - y²)/2
⇒2cosα = xy - √(4 - 4x² - y² + x²y²)
⇒(xy - 2cosα)² = √(4 - 4x² - y² + x²y²)
squaring both sides we get,
⇒x²y² + 4cos²α - 4xycosα = 4 - 4x² - y² + x²y²
⇒4x² - 4xycosα + y² = 4 - 4cos²α = 4(1 - cos²α)
⇒4x² - 4xycosα + y² = 4sin²α
hence it is clear that, 4x² - 4xycosα + y² = 4sin²α
option (d) is correct choice.
also read similar questions : If cos-1(x/a) + cos-1(y/b) = alpha,
Prove that, x2/a2 + y2/b2 - 2xy/ab * [cos(alpha)]= sin2(alpha)
https://brainly.in/question/2971029
if alpha and beta are the zeros of quadratic polynomial p(x)=4x2-5x-1,find the value of alpha square beta+ alpha beta sq...
https://brainly.in/question/3898952