Math, asked by rankitadhenki, 9 months ago

if cos^-1 x +cos^-1 y = π then show that x+y=0​

Answers

Answered by MOSFET01
8

Solution :

 cos^{-1}x\: +\: cos^{-1}y\:=\: \pi

 cos^{-1}[xy\:-\:\sqrt{(1\:-\:x^2)(1\: - \: y^2)}] \: =\: \pi

 xy\:-\:\sqrt{(1\:-\:x^2)(1\: - \: y^2)}\: =\: cos\: \pi

 xy\:-\:\sqrt{(1\:-\:x^2)(1\: - \: y^2)}\: =\: - 1

 xy\: +\: 1 \: = \: \sqrt{(1\:-\:x^2)(1\: - \: y^2)}

Squaring both side

 (xy\: +\: 1)^2 \: = (\: 1 \: - \: y^2 \: -\: x^2\: +\: x^2y^2)^{\frac{1}{\cancel{2}} \times\cancel{2}}

 \cancel{x^2y^2} \: +\: \cancel{1} \: +\: 2xy \: = \: \cancel{1} \: - \: y^2 \: -\: x^2\: +\: \cancel{x^2y^2}

 2xy \: +\: x^2 \:+\: y^2\: =\: 0

 (x\: +\: y)^2\: =\: 0

 x\: +\: y \: =\: 0

Hence proved

Final Result

 \boxed{\boxed{\bold{x\:+\:y\: =\: 0}}}

Answered by itzcupycake
0

Answer:

  • therefore x+y =0

  1. Hope it helps you
Similar questions