If cos 2b= cos(a+c)/cos(a-c) then tan a , tan b, tan c are in
Answers
Answered by
29
cos(2B) = 2 cos^2(B) - 1 = 2/sec^2(B) -1 = (1-tan^2(B))/(1+tan^2(B))
Then, clearing the fraction:
cos(A-C) - Cos(A-C)tan^2(B) = cos(A+C) + cos(A+C)tan^2(B)
tan^2(B)(cos(A+C)+cos(A-C)) = cos(A-C)-cos(A+C)
tan^2(B)*2cos(A)cos(C) = 2sin(A)sin(C)
tan^2(B) = tan(A)tan(C) proving they are in G.P
Answered by
13
tan a, tan b and tan c are in G.P
Step-by-step explanation:
Given:
We have,
⇒
(By componendo−dividendo)
= tan a tan c
∴ tan a, tan b and tan c are in G.P
Similar questions