If cos^2x = sinx.cosx.355860.y then x = ?
Answers
Answer:
sin²(x) + 2sin(x)cos(x) + cos²(x) = y + 1/y
1 + sin(2x) = y + 1/y
If y is real then
y + 1/y ≤ -2
or
y + 1/y ≥ 2 **
1 + sin(2x) ≥ 2
sin(2x) = 1 since sin(2x) cannot be greater than 2
2x = π/2
x = π/4
Check: sin(π/4) + cos(π/4) = √2
√(1 + 1/1) = √2
sin(π/4) + cos(π/4) = √(y + 1/y) for x=π/4, y=1
OR
1 + sin(2x) ≤ -2
sin(2x) ≤ -3
No further solutions
x = π/4
--------------------------------------------------------------------------------------
**
u = y + 1/y
du/dy = 1 - 1/y²
du/dy = 0 at y = {-1,1}
d²u/dy² = 2/y³
d²u/dy² > 0 at y = 1 ---- local minimum
d²u/dy² < 0 at y = -1 ---- local maximum
u(1) = 1 + 1/1 = 2
u(-1) = -1 - 1/1 = -2
Answer:
sin²(x) + 2sin(x)cos(x) + cos²(x) = y + 1/y
1 + sin(2x) = y + 1/y
If y is real then
y + 1/y ≤ -2
or
y + 1/y ≥ 2 **
1 + sin(2x) ≥ 2
sin(2x) = 1 since sin(2x) cannot be greater than 2
2x = π/2
x = π/4
Check: sin(π/4) + cos(π/4) = √2
√(1 + 1/1) = √2
sin(π/4) + cos(π/4) = √(y + 1/y) for x=π/4, y=1
OR
1 + sin(2x) ≤ -2
sin(2x) ≤ -3
No further solutions
x = π/4
--------------------------------------------------------------------------------------
**
u = y + 1/y
du/dy = 1 - 1/y²
du/dy = 0 at y = {-1,1}
d²u/dy² = 2/y³
d²u/dy² > 0 at y = 1 ---- local minimum
d²u/dy² < 0 at y = -1 ---- local maximum
u(1) = 1 + 1/1 = 2
u(-1) = -1 - 1/1 = -2