Math, asked by arpan1234, 10 months ago

If cos ϴ = (-3)/( 5) and π < ϴ < 3π/2 , then find the values of remaining trigonometric functions and hence evaluate(cosecϴ + cotϴ)/(secϴ - tanϴ)

Answers

Answered by amitkumar44481
89

AnsWer :

1 / 6.

SolutioN :

 \tt \longmapsto cos \theta =  \dfrac{ - 3}{5}

We know,

  • Sin² A + Cos² A = 1.

 \tt \longmapsto  {sin}^{2} \theta +  {cos}^{2} \theta    = 1.

Putting the value of Cos ϴ.

 \tt \longmapsto  {sin}^{2} \theta +  {( \frac{ - 3}{5}) }^{2}     = 1.

 \tt \longmapsto  {sin}^{2} \theta  = 1 -   {( \frac{ - 3}{5}) }^{2}

 \tt \longmapsto  {sin}^{2} \theta =  1 -   \dfrac{ 9}{25}

 \tt \longmapsto  {sin}^{2} \theta  =  \dfrac{25 - 9}{25}

 \tt \longmapsto  {sin}^{2} \theta  =  \dfrac{16}{25}

 \tt \longmapsto  sin \theta  =   \pm \dfrac{4}{5}

\rule{120}3

Now, We have value of sin ϴ , cos ϴ

★ Let's Find tan ϴ.

  • We can write as tan ϴ = sin ϴ / cos ϴ.

 \tt \longmapsto  tan\theta  =  \dfrac{sin \theta}{cos \theta}

 \tt \longmapsto  tan\theta  =  \dfrac{ \frac{4}{5} }{ \frac{  3}{5} }

 \tt \longmapsto  tan\theta  =   \pm\dfrac{4}{3}

°•° Note : cos ϴ lies on π < ϴ < 3π/2 .

  • Quadrant third.
  • only ( tan ϴ and cot ϴ are positive )
  • More information in attachment ↑

So,

  • Sin ϴ = - 4 / 5.
  • cos ϴ = - 3 / 5.
  • tan ϴ = 4 / 3.
  • cosec ϴ = - 5 / 4.
  • sec ϴ = - 5 / 3.
  • cot ϴ = 3 / 4.

\rule{ 90}2

A/Q,

 \tt \longmapsto \dfrac{(cosec \theta  + cot \theta)}{(sec \theta - tan\theta)}

→ - 5 / 4 + 3 / 4 // - 5 / 3 - 4 / 3

→ - 1 / 2 * - 1 / 3.

→ 1 / 6.

Therefore, the required value is 1 / 6.

Attachments:
Similar questions