Math, asked by archanamohanty78, 10 months ago

If cos = 3 /5 , evaluate( sin−cot)/ 2tan

Answers

Answered by Anonymous
5

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a value of trigonometric function
  •  \sf{Cos\: x= \dfrac{3}{5}}

To Find:

  • We have to find the value of
  •  \\ \sf{\left ( \dfrac{sin\: x -  cot \: x}{2 tan \: x} \right ) }

Information Used:

  • \boxed{\sf{sin \: x = \left ( \dfrac{Perpendicular}{Hypotenuse} \right ) }} \\
  • \boxed{\sf{cos \: x = \left  ( \dfrac{Base}{Hypotenuse} \right ) }} \\
  • \boxed{\sf{tan \: x = \left ( \dfrac{Perpendicular}{Base} \right ) }} \\
  • \boxed{\sf{cosec \: x = \left ( \dfrac{Base}{Perpendicular} \right ) }} \\
  • \boxed{\sf{sec \: x = \left ( \dfrac{Hypotenuse}{Base} \right ) }} \\
  • \boxed{\sf{cot \: x = \left ( \dfrac{Base}{Perpendicular} \right ) }} \\

Solution:

We have been given that :

\boxed{\sf{\blue{Cos \: x = \dfrac{3}{5}} }}

______________________________

\bigstar \: \: \underline{\large\mathfrak\orange{We \: know \: that:}}

\hookrightarrow \sf{cos\: x = \dfrac{Base}{Hypotenuse}}

\hookrightarrow \sf{\dfrac{Base}{Hypotenuse } = \dfrac{3}{5}} \\ \\

Let us assume

\sf{Base(B) = 3x}

\sf{Hypotenuse(H) = 5x}

___________________________

\bigstar \: \: \underline{\large\mathfrak\orange{Using \:  Pythagoras \: Theorm} }

\implies \sf{ {(H)}^2 = {(P)}^2 + {(B)}^2}

\implies \sf{ {(5x)}^2 = P^2 + {(3x)}^2}

\implies \sf{ 25x^2 = P^2 = 9x^2}

\implies \sf{P^2 = 25x^2-9x^2}

\implies \sf{P^2 = 16x^2}

Taking Square root on Both sides

\implies \sf{P = \sqrt{16x^2}}

\implies \sf{P = 4x}

Hence Perpendicular of triangle = 4x

______________________________

Finding Values

\implies \sf{sin \: x = \dfrac{P}{H}=\dfrac{4x}{5x} =\dfrac{4}{5} }

\implies \sf{cot \: x = \dfrac{B}{P}=\dfrac{3x}{4x}=\dfrac{3}{4}}

\implies \sf{tan \: x = \dfrac{P}{B}=\dfrac{4x}{3x}=\dfrac{4}{3}} \\

Hence obtained values are

\boxed{\sf{\green{sin \: x = \dfrac{4}{5} }}} \\

\boxed{\sf{\green{cot \: x = \dfrac{3}{4} }}} \\

\boxed{\sf{\green{tan \: x = \dfrac{4}{3} }}} \\

______________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \:  the \: Question:}}

\hookrightarrow \sf{\dfrac{sin \: x -  cot \: x }{2tan \: x}}

\hookrightarrow \sf{\dfrac{\left ( \dfrac{4}{5} \right )  - \left ( \dfrac{3}{4} \right ) }{\left ( 2 \times \dfrac{4}{3} \right ) }}

Solving the expression

\hookrightarrow \sf{\dfrac{ \left ( \dfrac{16-15}{20} \right ) }{\left ( \dfrac{8}{3} \right ) }}

Reciprocaling the terms

\hookrightarrow \sf{\dfrac{1}{20} \times \dfrac{3}{8}}

\hookrightarrow \sf{\dfrac{3}{160}} \\

\boxed{\sf{\red{\dfrac{sin\: x - cot\: x }{2tan\: x} = \dfrac{3}{160}}}}

___________________________

Similar questions