Math, asked by sanjusanjay6090, 1 year ago

If cos θ = 3/5, show that (sinθ - cotθ)/ 2tanθ = 3/160

Answers

Answered by MarkAsBrainliest
10
Answer :

Given that, cosθ = 3/5

So, sinθ

= {√(5² - 3²)}/5

= {√(25 - 9)}/5

= {√16}/5

= 4/5

∴ tanθ = 4/3 and cotθ = 3/4

Now, (sinθ - cotθ) / (2 tanθ)

= (4/5 - 3/4) / (2 * 4/3)

= (16 - 15)/20 * 8/3

= 1/20 * 8/3

= 3/160

Hence, proved.

#MarkAsBrainliest
Answered by Anonymous
31

SOLUTION:-

Given:

If cos theta= 3/5.

To find:

Show that (sin theta -cot theta)/2 tan theta) = 3/160

Explanation:

cos \theta =  \frac{Base}{Hypotenuse}  =  \frac{3}{5}

Using the Pythagoras Theorem:

H² = B² + P²

=) 5² = 3² + P²

=) 25 = 9 +P²

=) P² = 25 -9

=) P² = 16

=) P= √16

=) P= 4

Now,

  \frac{sin \theta  - cos  \theta}{2tan \theta}  \\  \\  =  >  \frac{ \frac{P}{H}  -  \frac{B}{P} }{2 \times  \frac{P}{B} }  \\  \\  =  >  \frac{ \frac{4}{5}  -  \frac{3}{4} }{2 \times  \frac{4}{3} }  \\  \\  =  >  \frac{ \frac{16 - 15}{20} }{ \frac{8}{3} }  \\  \\  =  >  \frac{ \frac{1}{20} }{ \frac{8}{3} }  \\  \\  =  >  \frac{1}{20}  \times  \frac{3}{8}  \\  \\  =  >  \frac{3}{160}  =  \frac{3}{160}

Thank you.

Similar questions