Math, asked by rrohanbharadwaj, 10 months ago

If cos ɵ =

3÷5

then what is the value of 6tan ɵ - 5cos ɵ ?​

Answers

Answered by abhi178
5

Given : cosθ = 3/5

To find : the value of (6tanθ - 5cosθ)

solution : it is given that, cosθ = 3/5 = base/hypotenuse,

so, base = 3 and hypotenuse = 5

from Pythagoras theorem,

hypotenuse² = altitude² + base²

⇒5² = altitude² + 3²

⇒altitude = 4

now, tanθ = altitude/base = 4/3

now 6tanθ - 5cosθ

= 6 × 4/3 - 5 × 3/5

= 8 - 3

= 5

Therefore the value of (6tanθ - 5cosθ) = 5.

Answered by amitnrw
1

6tan ɵ - 5cos ɵ = - 11  or  5   if cos ɵ =  3÷5

Step-by-step explanation:

cos ɵ =  3÷5

Squaring both sides

=> cos ²ɵ =  9÷25

using

cos ²ɵ  + sin ²ɵ  = 1

9÷25   +   sin ²ɵ  =  1

=> sin ²ɵ  =   16÷25

=> sin ɵ  =  ±   4÷5

tan ɵ  = sin ɵ   ÷ cos ɵ

=> tan ɵ  =  (±   4÷5 )  ÷  (3÷5  )

=> tan ɵ  = ±   4÷3

6tan ɵ - 5cos ɵ

= 6 ( ±   4÷3 )  - 5 (3÷5)

= ± 8  -  3

= - 11  or  5

6tan ɵ - 5cos ɵ = - 11  or  5

Learn more:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

if a=60° and b=30°, find the value of (sin a cos b + cos a sin b) ^2

https://brainly.in/question/7852027

Similar questions