Math, asked by pkash9652, 11 months ago

If cos 30 = 2cos^215-1 then find cos 15

Answers

Answered by reshmavpatel021081
4

Answer:

SQRT3 +1/2×SQRT2

Step-by-step explanation:

COS15= COS(45-30)

=COS45COS30+SIN45SIN30

ROOT3 /2ROOT2+1/2ROOT2

Answered by harendrachoubay
6

\cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

Step-by-step explanation:

We have,

\cos 30=2\cos^215-1

To find, \cos 15=?

\cos 30=2\cos^215-1

2\cos^215-1=\cos 30

[∵ \cos 30=\dfrac{\sqrt{3}}{2}]

2\cos^215-1=\dfrac{\sqrt{3}}{2}

2\cos^215=\dfrac{\sqrt{3}}{2}+1

2\cos^215=\dfrac{\sqrt{3}+2}{2}

\cos^215=\dfrac{\sqrt{3}+2}{2\times 2}=\dfrac{\sqrt{3}+2}{4}

\cos 15=\sqrt{\dfrac{\sqrt{3}+2}{4}}

\cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

\cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

Hence, \cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

Similar questions