Math, asked by niranjanyamu, 1 year ago

if cos 30 is equal to 2 cos square 15 - 1 then the value of cos 15 is equal to​

Answers

Answered by suranatarun
3

Step-by-step explanation:

cos (30) = 2 x cos²(15)

cos²(15) = cos (30) / 2

cos (15) √[ cos (30) / 2]

Answered by harendrachoubay
1

\cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

Step-by-step explanation:

We have,

\cos 30=2\cos^2 15-1

To find, the value of \cos 15 = ?

\cos 30=2\cos^2 15-1

2\cos^2 15=\cos 30+1

2\cos^2 15=\dfrac{\sqrt{3}}{2}+1

We know that,

\cos 30=\dfrac{\sqrt{3}}{2}

2\cos^2 15=\dfrac{\sqrt{3}+2}{2}

\cos^2 15=\dfrac{\sqrt{3}+2}{4}

\cos 15=\sqrt{\dfrac{\sqrt{3}+2}{4}}

\cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

\cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

∴ The value of \cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

Thus, the value of \cos 15 is equal to \dfrac{{\sqrt{3}+1}}{2\sqrt{2}}.

Similar questions