Math, asked by chunnujain0, 11 months ago

If cos 3A = sin(A-34), where 3A is an acute angle, then find @

Answers

Answered by Anonymous
47

\bf{\underline{\underline{\bf{\red{Question}}}}}

If cos 3A = sin(A-34), where 3A is an acute angle, then find the value of A

\bf{\underline{\underline{\bf{\red{To\:find}}}}}

Find the value of A

\bf{\underline{\underline{\bf{\red{Solution}}}}}

\large\implies\sf cos3A=sin(A-34)

\large\implies\sf sin(90-3A)=sin(A-34)

\large\implies\sf 90-3A=A-34

\large\implies\sf 90+34=3A+A

\large\implies\sf 124=4A

\large\implies\sf A=\large\cancel\frac{116}{4}=31

\large{\boxed{\mathrm{A=31}}}

\bf{\underline{\underline{\bf{\red{Important\:notes}}}}}

  • sin(90-) = cos∅
  • tan(90-) = cot∅
  • sec(90-) = cosec∅
  • sin²+cos² = 1
  • tan²-cot² = 1
  • cosec²-cot² = 1
Answered by MяƖиνιѕιвʟє
25

\bold{\huge{\fbox{\color{Black}{Given}}}}

Cos3A = sin(A-34)

\bold{\huge{\fbox{\color{Black}{To find}}}}

Value of A

\bold{\huge{\fbox{\color{Black}{Solution}}}}

We know that,

Sin(90-Φ) = CosΦ

So,

=> Cos3A = sin(A-34)

=> Sin(90-3A) = sin(A-34)

On Dividing both sides by sin, we get

=> (90 - 3A) = ( A - 34)

=> 90 + 34 = A + 3A

=> 124 = 4A

=> A = 124/4 = 31°

Some more equation :-

  • Sin( 90 - Φ) = CosΦ

  • Cos(90 -Φ) = SinΦ

  • Sec(90-Φ) = CosecΦ

  • Cosec(90-Φ) = SecΦ

  • Tan(90-Φ) = CotΦ

  • Cot(90-Φ) = TanΦ
Similar questions