Math, asked by shahshaurya545, 9 months ago

If cosθ =4/5, then the value of cosecθ/(1+cosθ) is :-

(a) 7/5 (b) 2/7 (c) 5/7 (d) 4/7​

Answers

Answered by Anonymous
7

Answer:

{\bf{\green{Given, }}}

{\bf{\red{cosθ=4/5}}}

{\bf{\blue{by}}}{\bf{\pink{using }}}{\bf{\green{P.T:}}}

{\bf{\orange{we}}}{\bf{\blue{get}}}{\bf{\red{sides}}}{\bf{\green{3,4,5}}}

{\bf{\pink{sinθ=3/5}}}

{\bf{\blue{=>cosecθ/(1+cosθ)}}}

{\bf{\red{=>cosecθ/(1+4/5)}}}

{\bf{\blue{=>cosecθ/(9/5)}}}

{\bf{\pink{=>cosecθ×5/9}}}

{\bf{\green{=>5/9×1/sinθ}}}

{\bf{\orange{=>5/9×1/3/5}}}

{\bf{\blue{=>5/9×5/3}}}

{\bf{\red{=>25/27}}}

Answered by BRAINLYBOOSTER12
1

 {\bf{\red{Given, cosθ=4/5}}}

Therefore, sinθ = 3/5.

Now, cosecθ/(1+cosθ) = 5/3 /(1+ 4/5) = 5/3 × 5/9 = 25/27

Similar questions