If {(Cos^4)A/(Cos^2)B} + {(Sin^4)A/(Sin^2)B} = 1
Then prove that {(cos^4)B/(cos^2)A} + {(SIn^4)B/(sin^2)A} = 1
Answers
Answer:
Here is the explanation
Plss mark this ques brainliest
,
Cos⁴B/Cos²A + Sin⁴B/Sin²A = 1 if Cos⁴A/Cos²B + Sin⁴A/Sin²B = 1
Step-by-step explanation:
Cos⁴A/Cos²B + Sin⁴A/Sin²B = 1
=> Cos⁴ASin²B + Sin⁴ACos²B = Cos²BSin²B
=> Cos⁴A(1 - Cos²B) + (Sin²A)²Cos²B = Cos²BSin²B
=> Cos⁴A(1 - Cos²B) + (1 - Cos²A)²Cos²B = Cos²BSin²B
=> Cos⁴A(1 - Cos²B) + (1 + Cos⁴A - 2Cos²A)Cos²B = Cos²BSin²B
=> Cos⁴A - Cos⁴ACos²B + Cos²B + Cos⁴ACos²B - 2Cos²ACos²B = Cos²BSin²B
=> Cos⁴A + Cos²B - 2Cos²ACos²B = Cos²B(1 - Cos²B)
=> Cos⁴A + Cos²B - 2Cos²ACos²B = Cos²B - Cos⁴B
=> Cos⁴A - 2Cos²ACos²B + Cos⁴B = 0
=> (cos²A - Cos²B)² = 0
=> cos²A - Cos²B = 0
=> cos²A = Cos²B
=> 1 - Sin²A = 1 - Sin²B
=> Sin²A = Sin²B
LHS = Cos⁴B/Cos²A + Sin⁴B/Sin²A
= Cos⁴B/Cos²B + Sin⁴B/Sin²B
= Cos²B + Sin²B
= 1
= RHS
QED
Proved
Learn more:
If cos^4A/cos^2B + sin^4A/sin^2B=1. prove that sin^4A+sin^4B
https://brainly.in/question/5152123
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635