Math, asked by madhurikpatil200, 8 months ago

If cos =40/9 find the values of cosec &
sin​

Answers

Answered by hearthacker54
25

Answer:

0Save

0SaveLet us draw a ∆ ABC in which ∠B = 90°.

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we get

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40k

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41cos A = AB/AC = = 9k/41k = 9/41

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41cos A = AB/AC = = 9k/41k = 9/41tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41cos A = AB/AC = = 9k/41k = 9/41tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9csc A = 1/sin A = 41/40

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41cos A = AB/AC = = 9k/41k = 9/41tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9csc A = 1/sin A = 41/40sec A = 1/cos A = 41/9 and

0SaveLet us draw a ∆ ABC in which ∠B = 90°.Then cos θ = AB/AC = 9/41.Let AB = 9k and AC = 41k, where k is positive.By Pythagoras’ theorem, we getAC2 = AB2 + BC2⇒ BC2 = AC2 – AB2⇒ BC2 = [(41k)2 – (9k)2]⇒ BC2 = [1681k2 – 81k2]⇒ BC2 = 1600k2⇒ BC = √(1600k2)⇒ BC = 40kTherefore, sin A = BC/AC = 40k/41k = 40/41cos A = AB/AC = = 9k/41k = 9/41tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9csc A = 1/sin A = 41/40sec A = 1/cos A = 41/9 andcot A = 1/tan A = 9/40.

here is your answer mate mark as brainliest

Similar questions