Math, asked by barj10029, 3 months ago

If cos
(40+x)° = sin 30° find the valueof x

Answers

Answered by pr283967
0

Answer:

fire player jsjjdbjdjdjd to Question to Question I will have used

Step-by-step explanation:

please IIIT I will have the time and money he has

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{cos(40 + x)\degree \: = sin30\degree \:}  \\  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{the \: value \: of \: x} \\   \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{sin(90\degree \: - x) = cosx}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cos(40 + x)\degree \: = sin30\degree \:

\rm :\longmapsto\:cos(40 + x)\degree \: = sin(90\degree \: - 60\degree)

\rm :\longmapsto\:cos(40 + x)\degree \: = cos60\degree \:

So, on comparing, we get

\rm :\longmapsto\:40 + x = 60

\bf\implies \:x \:  =  \: 20

Additional Information :-

1. \:  \:  \boxed{ \bf{sin(90\degree \: - x) = cosx}}

2. \:  \:  \boxed{ \bf{cos(90\degree \: - x) = sinx}}

3. \:  \:  \boxed{ \bf{tan(90\degree \: - x) = cotx}}

4. \:  \:  \boxed{ \bf{cot(90\degree \: - x) = tanx}}

5. \:  \:  \boxed{ \bf{sec(90\degree \: - x) = cosecx}}

6. \:  \:  \boxed{ \bf{cosec(90\degree \: - x) = secx}}

Similar questions