if cos (90°-A) =0,then sin (A+B)=
Answers
Given:—
- cos (90⁰ - A) = 0
Now,
♦Identity used :—
Answer:
sinB
Step-by-step explanation:
Given ,
cos(90° - A) = 0
To Find :-
Value of :-
sin(A + B)
How To Do :-
As they gave that 'cos(90° - A) = 0' we need to expand it by using the formula of 'cos(A - B)' and we need find the value of 'A' or by using the quadrants we can find the value of 'A' and we need to substitute the value of 'A' in sin(A + B).
Formula Required :-
cos(90° - α) = sinα
cos(A - B) = cosAcosB + sinAsinB
sin(A + B) = sinAcosB + cosAsinB
sin0° = 0
cos0° = 0
Solution :-
Method 1 :-
cos(90° - A) = 0
cos90°.cosA + sin90°.sinA = 0
(0) cosA + (1)sinA = 0
0 + sinA = 0
sinA = 0
sinA = sin0°
cancelling 'sin' on both sides :-
A = 0°
sin(A + B) = sinAcosB + cosAsinB
= sin0°.cosB + cos0°. sinB
= (0) cosB + (1) sinB
= 0 + sinB
= sinB
∴ sin(A + B) = sinB
Method 2 :-
cos(90° - A) = 0
→ sinA = 0
[ ∴ cos(90° - α) = sinα ]
sinA = sin0°
cancelling 'sin' on both sides :-
A = 0°
sin(A + B) = sin(0° + B)
= sinB
∴ sin(A + B) = sinB.