If cos A=0.8, Find the value of 5sinA-8tanA
Answers
Answered by
11
- 3
__________________________
Given :-
• cosA = 0.8
To Find :-
• Value of 5sinA - 8tanA
__________________________
cosA = b/h = 0.8 = 8/10 = 4/5
Here,
• Base = 4
• Hypotenuse = 5
• Perpendicular = ?
★ H² = B² + P²
=> (5)² = (4)² + (P)²
=> 25 = 16 + P²
=> 25 - 16 = P²
=> P² = 9
=> P = √9
=> P = √(3 × 3)
=> P = 3
★ Hence, perpendicular = 3
• sinA = p/h = 3/5
• tanA = p/b = 3/4
★ 5sinA - 8tanA
=> 5(3/5) - 8(3/4)
=> 3 - 6
=> - 3
Hence, the value of 5sinA - 8tanA is - 3.
__________________________
Answered by
2
Answer:
Answer
- 3
__________________________
Given :-
• cosA = 0.8
To Find :-
• Value of 5sinA - 8tanA
__________________________
Solution
cosA = b/h = 0.8 = 8/10 = 4/5
Here,
• Base = 4
• Hypotenuse = 5
• Perpendicular = ?
★ H² = B² + P²
=> (5)² = (4)² + (P)²
=> 25 = 16 + P²
=> 25 - 16 = P²
=> P² = 9
=> P = √9
=> P = √(3 × 3)
=> P = 3
★ Hence, perpendicular = 3
• sinA = p/h = 3/5
• tanA = p/b = 3/4
★ 5sinA - 8tanA
=> 5(3/5) - 8(3/4)
=> 3 - 6
=> - 3
Hence, the value of 5sinA - 8tanA is - 3.
__________________________
Similar questions