Math, asked by vinayks12121976, 1 month ago

If cos A = 1/2 and sin B = 1/√2,find value of
 \frac{ \tan(a) -  \tan(b)  }{1 +  \tan(a) \tan(b)  }
Here angles A and B are from different right triangles.​

Answers

Answered by Slogman
2

Answer:

2-\sqrt{3}

Step-by-step explanation:

given,

cosA=\frac{1}{2}  , sinB=\frac{1}{\sqrt{2} }

now,

cosA=\frac{1}{2} \\But, cos60^o=\frac{1}{2} \\\\A=60^o

similarly,

sinB=\frac{1}{\sqrt{2} } \\but, sin45^o=\frac{1}{\sqrt[]{2} } \\B=45^o

now, \frac{tanA-tanB}{1+tanA.tanB} = \frac{tan60^o-tan45^o}{1+tan60^o.tan45^o}

 = \frac{\sqrt[]{3}-1 }{1+\sqrt{3}.1 }           [tan60^o=\sqrt{3}, tan45^o=1]

== \frac{\sqrt{3} -1}{\sqrt{3}+1 } \\=\frac{\sqrt{3} -1}{\sqrt{3}+1 } .\frac{\sqrt{3} -1}{\sqrt{3}-1 }--- [rationalisation]\\=\frac{(\sqrt{3} -1)^{2} }{(\sqrt{3})^2-(1)^2 } \\=\frac{3+1-2\sqrt{3} }{3-1} \\=\frac{4+2\sqrt{3} }{2} \\=\frac{4-2\sqrt{3} }{2} \\=2-\sqrt{3}

Similar questions