If cos A=1/2 then cosec A=2/√3
Answers
Answered by
0
We have, cosec A = 2
Now, sin A = 1 cosecA
- sin A 2
We know that sin? A + cos? A= 1 cos? A = 1 - sin? A
- cos A = v(1-sin? A) - cos A = v{1- (1.)? }
= cos A = V(1 - ) → cos A = b()
→ COS A = V3 2
We know that tan A sin A cos A
- tan A =
1/2
V3/2
» tan A = 1 1
V3
We need to find 1 tan A + sinA 1+cos A
Substituting the values of each trigonometric function obtained earlier, we get:
1 + 1 1 = 1/13 +
sin A
tan A 1+cos A
V3 + 1/2 (2+V3)/2
1 = V3 + = 2+V3
1/2
1+V3/2
=
2/3+4
=
= 4/3-6+8-4V3
2/3+3+1
2+V3
2+13
2/3+3+1 2-V3 Х 2+13 2-V3
4-3
8-6
= 2
Answered by
0
Answer:
cosA=1/2=base/height
perpendicular²=height²-base²
p²=2²-1²
p²=3
p=√3
So,cosecA=2/√3=h/p
Step-by-step explanation:
Please mark as a brainliest answer.
Similar questions