Math, asked by shlokverma969, 4 months ago

If cos A=1/2 then cosec A=2/√3​

Answers

Answered by Anonymous
0

We have, cosec A = 2

Now, sin A = 1 cosecA

- sin A 2

We know that sin? A + cos? A= 1 cos? A = 1 - sin? A

- cos A = v(1-sin? A) - cos A = v{1- (1.)? }

= cos A = V(1 - ) → cos A = b()

→ COS A = V3 2

We know that tan A sin A cos A

- tan A =

1/2

V3/2

» tan A = 1 1

V3

We need to find 1 tan A + sinA 1+cos A

Substituting the values of each trigonometric function obtained earlier, we get:

1 + 1 1 = 1/13 +

sin A

tan A 1+cos A

V3 + 1/2 (2+V3)/2

1 = V3 + = 2+V3

1/2

1+V3/2

=

2/3+4

=

= 4/3-6+8-4V3

2/3+3+1

2+V3

2+13

2/3+3+1 2-V3 Х 2+13 2-V3

4-3

8-6

= 2

Answered by luckysingh804080
0

Answer:

cosA=1/2=base/height

perpendicular²=height²-base²

p²=2²-1²

p²=3

p=√3

So,cosecA=2/√3=h/p

Step-by-step explanation:

Please mark as a brainliest answer.

Similar questions