Math, asked by manushrishirodkar, 21 days ago

If Cos A = 1/2 then the value of
Cos A [Cos A - Sec A] is​

Answers

Answered by guptasudha3478
3

Ans: -3/4

Please mark me as brainliest

Attachments:
Answered by Anonymous
23

Given :-

 \bf \cos A = \dfrac{1}{2}

To Find:-

Value of \bf \cos A ( \cos A - \sec A)

Solution :-

Before starting the question we shall know that ;

  •  \bf \sec \theta = \dfrac{1}{\cos \theta}

__________________________

Consider the value we have to find :-

\quad \leadsto \quad \bf \cos A ( \cos A - \sec A)

Apply the above identity ;

{: \implies \quad \sf \cos A \bigg( \cos A - \dfrac{1}{\cos A}\bigg)}

Now put the value of  \sf \cos A ;

{: \implies \quad \sf \dfrac{1}{2} \bigg( \dfrac{1}{2} - \dfrac{1}{\dfrac{1}{2}}\bigg)}

{: \implies \quad \sf \dfrac{1}{2} \bigg( \dfrac{1}{2} - 2 \bigg)}

{: \implies \quad \sf \dfrac{1}{2} \bigg( \dfrac{1}{2} - 2 \bigg)}

{: \implies \quad \sf \dfrac{1}{2} \bigg( \dfrac{1-4}{2}\bigg)}

{: \implies \quad \sf \dfrac{1}{2} \bigg(-  \dfrac{3}{2}\bigg)}

{: \implies \quad \bf \therefore  \quad \cos A ( \cos A - \sec A) = - \dfrac{3}{4}}

Henceforth , The Required Answer is  \bf - \dfrac{3}{4} :D

Similar questions