If cos A= 12/13 and cot B =24/7 ,A lies on the second Quartdant and B in third quadrant. Find sum (a+b) ,Tan(a+b),cos(a+b) I will do as Brain least
Answers
Answer:
A+B = cos^-1(253/325)
tan(A+B) = 204/253
cos(A+B) = 253/325
Step-by-step explanation:
we have, cosA = 12/13
and cotB = 24/7
as, it is given that,A lies on 2nd quadrant and B lies on 3rd quadrant
so, cosA = -12/13
and cotB = 24/7
then, A = cos^-1(-12/13) = cos^-1(12/13)
B = cot^-1(24/7)
so, we have to calculate,,
A+B = cos^-1(12/13)+cot^-1(24/7) .... (1)
now, let cot^-1(24/7) = x
cotx = 24/7
cosecx = √{1+24²/7²}
= √{625/49}
= 25/7
so, sinx = 7/25
so, cosx = √{1-49/625}
cosx = √{576/625}
x = cos^-1(24/25)
by putting it in eq. 1
A+B = cos^-1(12/13)+cos^-1(24/25)
as, cos^-1(x)+cos^-1(y) = cos^-1{xy-√(1-x²)(1-y²)}
so, A+B,
cos^-1{12/13×24/25-√(25/169)(49/625)}
cos^-1{288/325-35/325} => A+B = cos^-1(253/325) ....ans.
and tan(A+B) =
let A+B= cos^-1(253/325) = y
cosy = 253/325
siny = √{1-64009/105625}
= √{41616/105625}
= 204/325
so, tany = (204/325)/(253/325)
= 204/253
y = tan^-1(204/253)
so, now..
tan{tan^-1(204/253)}
=> tan(A+B) => 204/253 .... ans.
and cos(A+B)
so, cos{cos^-1(253/325)} => cos(A+B) =>253/325 .... ans.
Answer:
A+B = cos^-1(253/325)
tan(A+B) = 204/253
cos(A+B) = 253/325
Step-by-step explanation:
we have, cosA = 12/13
and cotB = 24/7
as, it is given that,A lies on 2nd quadrant and B lies on 3rd quadrant
so, cosA = -12/13
and cotB = 24/7
then, A = cos^-1(-12/13) = cos^-1(12/13)
B = cot^-1(24/7)
so, we have to calculate,,
A+B = cos^-1(12/13)+cot^-1(24/7) .... (1)
now, let cot^-1(24/7) = x
cotx = 24/7
cosecx = √{1+24²/7²}
= √{625/49}
= 25/7
so, sinx = 7/25
so, cosx = √{1-49/625}
cosx = √{576/625}
x = cos^-1(24/25)
by putting it in eq. 1
A+B = cos^-1(12/13)+cos^-1(24/25)
as, cos^-1(x)+cos^-1(y) = cos^-1{xy-√(1-x²)(1-y²)}
so, A+B,
cos^-1{12/13×24/25-√(25/169)(49/625)}
cos^-1{288/325-35/325} => A+B = cos^-1(253/325) ....ans.
and tan(A+B) =
let A+B= cos^-1(253/325) = y
cosy = 253/325
siny = √{1-64009/105625}
= √{41616/105625}
= 204/325
So, tany = (204/325)/(253/325)
= 204/253
y = tan^-1(204/253)
So, now..
tan{tan^-1(204/253)}
=> tan(A+B) => 204/253 .... ans.
and cos(A+B)
so, cos{cos^-1(253/325)} => cos(A+B) =>253/325 .