Math, asked by kothagreeshma02, 22 hours ago

If cos A=12/13,then find sin A and tan A










Answers

Answered by inayausmanjt
0

Answer:

=0.417

Step-by-step explanation:

Correct option is A)

cosA=

13

12

               ---- ( 1 )

We know,

sin

2

A+cos

2

A=1

⇒  sin

2

A+(

13

12

)

2

=1                     [ From ( 1 ) ]

⇒  sin

2

A+

169

144

=1

⇒  sin

2

A=1−

169

144

⇒  sin

2

A=

169

169−144

⇒  sin

2

A=

169

25

⇒  sinA=

13

5

                    ----- ( 2 )

Now,

tanA=

cosA

sinA

⇒  tanA=

13

12

13

5

                         [ From ( 1 ) and ( 2 ) ]

⇒  tanA=

12

5

∴  sinA=

13

5

=0.385

∴  tanA=

12

5

=0.417

Answered by Sanshine0812
0

Hey dear here is your answer

It is given that ,

 \: cos \: A =  \frac{adjacent \: side}{hypotenuse }  \\  \frac{12}{13}

Calculate the opposite side of the triangle as shown,

opposite \: side =  \sqrt{ {(hypotenuse)}^{2} } - {(adjacent \: side )}^{2}  \\  =  \sqrt{ {13}^{2}  - {12}^{2}  }   \\  =  \sqrt{169 - 144}   \\  =  \sqrt{25}  \\  = 5 \: units

Calculate the value of sin A as shown,

sin \: A =  \frac{opposite \: side \: }{hypotenuse}   \\  =  \frac{5}{13}  \\

Calculate the value of tan A as shown,

tan \: A =  \frac{opposite \: \: side}{adjacent \: side \: }  \\  =  \frac{5}{12}

Final Answer

the \: value \: of \: sin \: A \:  =  \frac{5}{13}  \\  \\ the \: value \: of \: tan \: A =  \frac{5}{12}

Hope you found it helpful

Please Mark as Brainliest

Similar questions