Math, asked by udaysai4189, 1 year ago

If cos A=12\13 then find sin A and tan A

Answers

Answered by Anonymous
6

Answer: SinA = \bf\huge\frac{5}{13} , TanA = \bf\huge\frac{5}{12}

Step-by-step explanation:

Cos A = \bf\huge\frac{12}{13}

Trigonometric Rule :- Sin²A + cos² A = 1

Sin² A + ( \bf\huge\frac{12}{13} )² = 1

Sin² A + \bf\huge\frac{144}{169} = 1

Sin² A = 1 - (  \bf\huge\frac{144}{169} )

Sin² A = \bf\huge\frac{169 - 144}{169}

Sin² A = \bf\huge\frac{25}{169}

Sin A = √( 5/ 13 )²

Sin A = \bf\huge\frac{5}{13}

Tan A = \bf\huge\frac{sinA}{cosA}

= ( 5/13 ) ÷ ( 12 / 13 )

= \bf\huge\frac{5}{12}

Therefore ,

SinA = \bf\huge\frac{5}{13}

TanA = \bf\huge\frac{5}{12}


Anonymous: Mark as brainliest answer
Similar questions